Citation:
JIN Tao, XU Di, DIAO Peng, XIANG Min. Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2276-2284.
doi:
10.3866/PKU.WHXB201209101
-
TiO2 nanocrystals were synthesized using a sol-gel method, and then the impregnation technique was used to modify the surface of the TiO2 nanocrystals with FeO(OH). The optimal concentration of Fe3+ for the modification of the TiO2 nanocrystals was determined by UV-Vis spectroscopy. A cobalt-phosphate (CoPi) water oxidation catalyst was electrochemically deposited onto the FeO(OH)- TiO2 photoanodes. The resulting FeO(OH)-TiO2/CoPi composite photoanodes were systematically characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM), and the photoelectrochemical water oxidation properties of the FeO(OH)-TiO2/CoPi composite photoanodes were investigated in neutral conditions by electrochemical and photoelectrochemical methods. The results indicated that the TiO2 particles were pure anatase nanocrystals, and the FeO(OH) phase on the TiO2 surfaces was ethite. The optimal light absorption properties of the FeO(OH)-TiO2 photoanodes were achieved when the photoanodes were prepared in the precursor solution with a Fe3+:TiO2 mass ratio of 0.05%. The overpotential for oxygen evolution on the FeO(OH)-TiO2/CoPi composite photoanodes under illumination decreased significantly compared with that obtained on the CoPi catalyst. The high oxygen evolution activity of the composite photoanodes can be attributed to modification of FeO(OH) on TiO2 nanocrystal surfaces changing the light absorption band from the ultraviolet to the visible region and CoPi inhibited hole-electron recombination through facilitating the photon-induced hole transfer for water oxidation.
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Jang, J. S.; Kim, H. G.; Joshi, U. A.; Jang, J.W.; Lee, J. S. Int. J. Hydrog. Energy 2008, 33, 5975. doi: 10.1016/j.ijhydene.2008.07.105
-
[3]
(3) Dholam, R.; Patel, N.; Adami, M.; Miotello, A. Int. J. Hydrog. Energy 2009, 34, 5337. doi: 10.1016/j.ijhydene.2009.05.011
-
[4]
(4) Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor,G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K. S.;Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327. doi: 10.1021/jp809385x
-
[5]
(5) Liu, F. S.; Ji, R.;Wu, M.; Sun, Y. M. Acta Phys. -Chim. Sin.2007, 23, 1899. [刘福生, 吉仁, 吴敏, 孙岳明. 物理化学学报, 2007, 23, 1899.] doi: 10.3866/PKU.WHXB20071213
-
[6]
(6) Li, H. L. Luo,W. L.; Chen, T.; Tian,W. Y.; Sun, M.; Li, C.; Zhu,D.; Liu, R. R.; Zhao, Y. L.; Liu, C. L. Acta Phys. -Chim. Sin.2008, 24, 1383. [李海龙, 罗武林, 陈涛, 田文宇, 孙茂,黎春, 朱地, 刘冉冉, 赵宇亮, 刘春立. 物理化学学报,2008, 24, 1383.] doi: 10.3866/PKU.WHXB20080810
-
[7]
(7) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051
-
[8]
(8) ng, J.; Lai, Y.; Lin, C. Electrochimica Acta 2010, 55, 4776.doi: 10.1016/j.electacta.2010.03.055
-
[9]
(9) Fei, H.; Yang, Y.; Ro w, D. L.; Fan, X.; Oliver, S. R. J. ACS Appl. Mater. Interfaces 2010, 2, 974. doi: 10.1021/am100087b
-
[10]
(10) Zhang, Z.; Hossain, M. F.; Takahashi, T. Int. J. Hydrog. Energy2010, 35, 8528. doi: 10.1016/j.ijhydene.2010.03.032
-
[11]
(11) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
-
[12]
(12) Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Chem. Mater.2011, 23, 5282. doi: 10.1021/cm203025b
-
[13]
(13) Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.;Miyauchi, M.; Hashimoto, K. J. Phys. Chem. C 2010, 114,16481. doi: 10.1021/jp1071956
-
[14]
(14) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. App. Catal. B: Environ. 2010, 96, 142.
-
[15]
(15) Irie, H.; Kamiya, K.; Shibanuma, T.; Miura, S.; Tryk, D. A.;Yokoyama, T.; Hashimoto, K. J. Phys. Chem. C 2009, 113,10761. doi: 10.1021/jp903063z
-
[16]
(16) Nakamura, R.; Okamoto, A.; Osawa, H.; Irie, H.; Hashimoto, K.J. Am. Chem. Soc. 2007, 129, 9596. doi: 10.1021/ja073668n
-
[17]
(17) Luo, D. C;. Zhang, L. L.; Long, H. J.; Chen, Y. M.; Cao, Y. A.Acta Phys. -Chim. Sin. 2008, 24, 1095. [罗大超, 张兰兰, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2008, 24, 1095.] doi: 10.3866/PKU.WHXB20080632
-
[18]
(18) Kanan, M.W.; Nocera, D. G. Science 2008, 321, 1072. doi: 10.1126/science.1162018
-
[19]
(19) Surendranath, Y.; Kanan, M.W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501. doi: 10.1021/ja106102b
-
[20]
(20) Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.;Casey,W. H.; Britt, R. D.; Stahl, S. S. J. Am. Chem. Soc. 2011,133, 14431. doi: 10.1021/ja205647m
-
[21]
(21) Steinmiller, E. M. P.; Choi, K. S. Proc. Natl. Acad. Sci. U. S. A.2009, 106, 20633. doi: 10.1073/pnas.0910203106
-
[22]
(22) Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug,D. R.; Durrant, J. R. J. Am. Chem. Soc. 2011, 133, 14868. doi: 10.1021/ja205325v
-
[23]
(23) Zhong, D. K.; Gamelin, D. R. J. Am. Chem. Soc. 2010, 132,4202. doi: 10.1021/ja908730h
-
[24]
(24) Zhong, D. K.; Sun, J.; Inumaru, H.; Gamelin, D. R. J. Am. Chem. Soc. 2009, 131, 6086. doi: 10.1021/ja9016478
-
[25]
(25) Abdi, F. F.; van de Krol, R. J. Phys. Chem. C 2012, 116, 9398.
-
[26]
(26) Zhong, D. K.; Choi, S.; Gamelin, D. R. J. Am. Chem. Soc. 2011,133, 18370. doi: 10.1021/ja207348x
-
[27]
(27) Jeon, T. H.; Choi,W.; Park, H. Phys. Chem. Chem. Phys. 2011,13, 21392.
-
[28]
(28) Seabold, J. A.; Choi, K. S. Chem. Mater. 2011, 23, 1105. doi: 10.1021/cm1019469
-
[29]
(29) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 43. doi: 10.1016/S0021-9797(03)00036-5
-
[30]
(30) Sugimoto, T.; Zhou, X.; Muramatsu, A. J. Colloid Interface Sci.2003, 259, 53. doi: 10.1016/S0021-9797(03)00035-3
-
[31]
(31) Zhong, D. K.; Cornuz, M.; Sivula, K.; Grätzel, M.; Gamelin, D.R. Energy & Environmental Science 2011, 4, 1759. doi: 10.1039/c1ee01034d
-
[32]
(32) Chen, Y.; He, X.; Zhao, X.; Yuan, Q.; Gu, X. J. Colloid Interface Sci. 2007, 310, 171. doi: 10.1016/j.jcis.2007.01.046
-
[33]
(33) Klahr, B.; Gimenez, S.; Fabregat-Santia , F.; Hamann, T.;Bisquert, J. J. Am. Chem. Soc. 2012, 134, 4294. doi: 10.1021/ja210755h
-
[1]
-
-
-
[1]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[2]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[5]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[6]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[7]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[8]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[9]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[10]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[11]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[12]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[13]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[14]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[15]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[16]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
-
[17]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[18]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[19]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[20]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[1]
Metrics
- PDF Downloads(1095)
- Abstract views(2130)
- HTML views(15)