Citation:
ZHANG Yan-Feng, GAO Teng, LIU Zhong-Fan. Controlled Growth of Graphene on Metal Substrates and STM Characterizations for Microscopic Morphologies[J]. Acta Physico-Chimica Sinica,
;2012, 28(10): 2456-2464.
doi:
10.3866/PKU.WHXB201209062
-
Recently, chemical vapor deposition (CVD) has been widely applied to the large-scale synthesis of graphene on various metal substrates. As a powerful and direct imaging method, scanning tunneling microscopy (STM) has been used to study the microscopic morphologies of graphene on metal substrates, for the purpose of further optimizing the growth parameters. This review presents the recent progress in the controlled growth of graphene on Cu foils, Pt foils, and Ni substrates, as well as the research of the microscopic morphologies, defect states, and stacking orders of graphene. Monolayer growth of graphene on Cu and Pt foils follows a surface catalyzed growth mechanism, while bilayer graphene growth follows an epitaxial growth mechanism. After the formation of a bilayer, the corrugated substrate breaks the planar conjugated π bonds of graphene, inducing a binding configuration change from sp2 to sp3. Then, pristine wrinkles are introduced by the thermal expansion mismatch between graphene and the metal substrates. Finally, the roughness of graphene on the Pt foils is considerably less than that of graphene on Cu foils, and the multifaceted interweaving Pt substrate has almost no effect on the in-plane continuity of graphene.
-
-
-
[1]
(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
-
[2]
(2) Bolotin, K. I.; Sikes, K. J.; Zhang, Z.; Klima, M.; Fudenberg,G.; Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008,146, 351. doi: 10.1016/j.ssc.2008.02.024
-
[3]
(3) Schwierz, F. Nat. Nanotech. 2010, 5, 487. doi: 10.1038/nnano.2010.89
-
[4]
(4) Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.;Chiu, H. Y.; Grill, A.; Avouris, P. Science 2012, 327, 662.
-
[5]
(5) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K.M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.;Ruoff, R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969
-
[6]
(6) Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.;Wang, X. R.;Wang, E. G.; Dai, H. J. Nat. Nanotech. 2008, 3, 538. doi: 10.1038/nnano.2008.210
-
[7]
(7) Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.;Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P.N.; de Heer,W. A. J. Phys. Chem. B 2004, 108, 19912. doi: 10.1021/jp040650f
-
[8]
(8) Sutter, P.W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7, 406.doi: 10.1038/nmat2166
-
[9]
(9) Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. doi: 10.1021/nl801827v
-
[10]
(10) Li, X. S.; Cai,W.W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.;Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.;Colombo, L.; Ruoff, R. S. Science 2009, 324, 1312. doi: 10.1126/science.1171245
-
[11]
(11) Li, X. S.; Zhu, Y.W.; Cai,W.W.; Borysiak, M.; Han, B. Y.;Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Lett.2009, 9, 4359. doi: 10.1021/nl902623y
-
[12]
(12) Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10,3512. doi: 10.1021/nl1016706
-
[13]
(13) Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.;Gao, H. J. Adv. Mater. 2009, 21, 2777. doi: 10.1002/adma.200800761
-
[14]
(14) Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.;Peng, H. L.; Liu, Z. F. ACS Nano 2011, 5, 4014. doi: 10.1021/nn200573v
-
[15]
(15) Ishigami, M.; Chen, J. H.; Cullen,W. G.; Fuhrer, M. S.;Williams, E. D. Nano Lett. 2007, 7, 1643. doi: 10.1021/nl070613a
-
[16]
(16) Xu, K.; Cao, P.; Heath, J. R. Nano Lett. 2009, 9, 4446. doi: 10.1021/nl902729p
-
[17]
(17) Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Lett.2011, 11, 1106. doi: 10.1021/nl104000b
-
[18]
(18) Gao, T.; Xie, S. B.; Gao, Y. B.; Liu, M. X.; Chen, Y. B.; Zhang,Y. F.; Liu, Z. F. ACS Nano 2011, 11, 9194.
-
[19]
(19) Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang,Y. F.; Liu, Z. F. Nano Lett. 2011, 11, 297. doi: 10.1021/nl103962a
-
[20]
(20) Zhang, Y. F.; Gao, T.; Xie, S. B.; Dai, B. Y.; Gao, Y. B.; Chen, Y.B.; Liu, M. X. Nano Res. 2012, 5, 402. doi: 10.1007/s12274-012-0221-6
-
[21]
(21) Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.;Liu, Z. F. Nano Res. 2011, 4, 712. doi: 10.1007/s12274-011-0127-8
-
[22]
(22) Meng, L.; Zhang, Y. F.; Yan,W.; Feng, L.; He, L. Dou, R. F.;Nie, J. C. Appl. Phys. Lett. 2012, 100, 091601. doi: 10.1063/1.3691952
-
[23]
(23) Li, G. H.; Luican, A.; Lopes dos Santos, J. M. B.; Castro, N. A.H.; Reina, A.; Kong, J.; Andrei, E. Y. Nat. Phys. 2010, 4, 109.
-
[24]
(24) Chen, Z. Y.; Yuan, H. T.; Zhang, Y. F.; Nomura, K.; Gao, T.;Gao, Y. B.; Shimotani, H.; Liu, Z. F.; Iwasa, Y. Nano Lett. 2012,12, 2212. doi: 10.1021/nl204012c
-
[25]
(25) Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie,S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. ACS Nano2012, 6, 6562. doi: 10.1021/nn302303n
-
[1]
-
-
-
[1]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[2]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[3]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[4]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[5]
Renjie Xue , Chao Ma , Jing He , Xuechao Li , Yanning Tang , Lifeng Chi , Haiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011
-
[6]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[7]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[8]
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
-
[9]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[10]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[11]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[14]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[15]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[16]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[17]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[18]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[19]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[20]
Xiaowu Zhang , Pai Liu , Qishen Huang , Shufeng Pang , Zhiming Gao , Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021
-
[1]
Metrics
- PDF Downloads(1591)
- Abstract views(2346)
- HTML views(19)