Citation:
WANG Bi-Yao, TAN Ning-Xin, YAO Qian, LI Ze-Rong, LI Xiang-Yuan. Accurate Calculation of the Reaction Barriers and Rate Constants of the Pyrolysis of Alkyl Radicals in the β Position Using the Isodesmic Reaction Method[J]. Acta Physico-Chimica Sinica
doi:
10.3866/PKU.WHXB201209053
-
The isodesmic reaction method is proposed for the accurate calculation of the reaction barriers and rate constants for an important class of reactions in the high-temperature combustion mechanism: the pyrolysis of alkyl radicals in the β position. The reaction barriers were calculated for a representative set of five reactions by two schemes: the first scheme is to calculate the reaction barriers directly from approximate ab initio calculations; and the second scheme is to correct the reaction barriers from the first scheme using the isodesmic reaction method. Ten different levels of ab initio calculations were used, and the absolute average maximum deviations of the reaction barriers by the isodesmic reaction method and direct ab initio calculations were 5.32 and 16.16 kJ·mol-1, respectively, indicating that the isodesmic reaction method does not significantly depend on the level of ab initio theory used. The rate constants of the three representative reactions in the temperature range of 500-2000 K were calculated by the isodesmic reaction method. The average and maximum values of kmax/kmin between the calculated and experimental values were 1.67 and 2.49, respectively. Therefore, the isodesmic reaction method is efficient and reliable for the calculation of the reaction barriers and rate constants of reactions in a class at a modest level of ab initio theory.
-
-
-
[1]
(1) Lu, T. F.; Law, C. K. Combust. Flame 2006, 144, 24. doi: 10.1016/j.combustflame.2005.02.015
-
[2]
(2) Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154, 67.doi: 10.1016/j.combustflame.2007.10.020
-
[3]
(3) Curran, H. J.; Gaffuri, P.; Pitz,W. J. Combust. Flame 1998, 114,149. doi: 10.1016/S0010-2180(97)00282-4
-
[4]
(4) Curran, H. J.; Gaffuri, P.; Pitz,W. J. Combust. Flame 2002, 129,253. doi: 10.1016/S0010-2180(01)00373-X
-
[5]
(5) Knyazev, V. D.; Bencsura, A.; Dubinsky, I. A.; Gutman, D.;Senkan, S. M. Proc. Combust. Inst. 1994, 25, 817.
-
[6]
(6) Knyazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D.J. Phys. Chem. 1994, 98, 5279. doi: 10.1021/j100071a018
-
[7]
(7) Knyazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D.J. Phys. Chem. 1994, 98, 11099. doi: 10.1021/j100094a018
-
[8]
(8) Slagle, I. R.; Batt, L.; Gmurczyk, G.W.; Gutman, D.; Tsang,W.J. Phys. Chem. 1991, 95, 7732. doi: 10.1021/j100173a034
-
[9]
(9) Bencsura, A.; Knyazev, V. D.; Xing, S. B.; Slagle, I. R.;Gutman, D. Proc. Combust. Inst. 1992, 24, 629.
-
[10]
(10) Zheng, X. B.; Blowers, P. Ind. Eng. Chem. Res. 2006, 45, 530.doi: 10.1021/ie0508942
-
[11]
(11) Truong, T. N. J. Chem. Phys. 2000, 113, 4959.
-
[12]
(12) Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A2006, 110, 473. doi: 10.1021/jp051280d
-
[13]
(13) Muszynska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N.J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x
-
[14]
(14) Bankiewicz, B.; Huynh, L. K.; Ratkiewicz, A.; Truong, T. N. J. Phys. Chem. A 2009, 113, 1564. doi: 10.1021/jp808874j
-
[15]
(15) Zhang, S.W.; Truong, T. N. J. Phys. Chem. A 2003, 107, 1138.doi: 10.1021/jp021265y
-
[16]
(16) Kungwan, N.; Truong, T. N. J. Phys. Chem. A 2005, 109, 7742.doi: 10.1021/jp051799+
-
[17]
(17) Huynh, L. K.; Truong, T. N. Theor. Chem. Acc. 2008, 120, 107.doi: 10.1007/s00214-007-0311-9
-
[18]
(18) Hehre,W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796. doi: 10.1021/ja00719a006
-
[19]
(19) Radom, L.; Hehre,W. J.; Pople, J. A. J. Am. Chem. Soc. 1971,93, 289. doi: 10.1021/ja00731a001
-
[20]
(20) Wiberg, K. B.; Ochterski, J.W. J. Comput. Chem. 1997, 18, 108.
-
[21]
(21) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021
-
[22]
(22) Truhlar, D. G. Chem. Phys. Lett. 1998, 294, 45. doi: 10.1016/S0009-2614(98)00866-5
-
[23]
(23) Halkier, A.; Helgaker, T.; Jorgensen, P. J. Chem. Phys. Lett.1999, 302, 437. doi: 10.1016/S0009-2614(99)00179-7
-
[24]
(24) De Lara-Castells, M. P.; Krems, R. V.; Buchachenko, A. A. J. Chem. Phys. 2001, 115, 10438. doi: 10.1063/1.1415078
-
[25]
(25) Huh, S. B.; Lee, J. S. J. Chem. Phys. 2003, 118, 3035. doi: 10.1063/1.1534091
-
[26]
(26) Hwang, R.; Park, Y. C.; Lee, J. S. Theor. Chem. Acc. 2006, 115,54. doi: 10.1007/s00214-005-0675-7
-
[27]
(27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision B.01; Gaussian Inc.: Pittsburgh, PA, 2003.
-
[28]
(28) Duncan,W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem.1998, 19, 1039.
-
[29]
(29) Eckart, C. Phys. Rev. 1930, 35, 1303. doi: 10.1103/PhysRev.35.1303
-
[30]
(30) Morganroth,W. E.; Calvert, J. G. J. Am. Chem. Soc. 1966, 88,5387. doi: 10.1021/ja00975a004
-
[31]
(31) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1996, 100, 5318.doi: 10.1021/jp952229k
-
[32]
(32) Kerr, J. A.; Trotman-Dickenson, A. F. J. Chem. Soc. 1960, 323,1602.
-
[33]
(33) Gierczak, T.; Gawlowski, J.; Niedzielski, J. React. Kinet. Catal. Lett. 1988, 36, 434.
-
[34]
(34) Tsang,W. J. Am. Chem. Soc. 1985, 107, 2872. doi: 10.1021/ja00296a007
-
[35]
(35) Lin, M. C.; Laidler, K. J. Can. J. Chem. 1967, 45, 1315.
-
[36]
(36) Gang, J.; Pilling, M. J.; Robertson, S. H. J. Chem. Soc. Faraday Trans. 1997, 93, 1481. doi: 10.1039/a607566e
-
[37]
(37) Metcalfe, E. L.; Trotman-Dickenson, A. F. J. Chem. Soc. 1960,980, 5072.
-
[38]
(38) Slater, D. H.; Collier, S. S.; Calvert, J. G. J. Am. Chem. Soc.1968, 90, 268. doi: 10.1021/ja01004a010
-
[39]
(39) Douhou, S.; Perrin, D.; Martin, R. J. Chim. Phys. 1994, 91,1628.
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, doi: 10.3866/PKU.DXHX202310117
-
[3]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, doi: 10.12461/PKU.DXHX202403024
-
[4]
Xuefei Zhao , Xuhong Hu , Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, doi: 10.12461/PKU.DXHX202410008
-
[5]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, doi: 10.3866/PKU.DXHX202311037
-
[6]
Zihao Guo , Shichen Ma , Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, doi: 10.12461/PKU.DXHX202408038
-
[7]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, doi: 10.12461/PKU.DXHX202407052
-
[8]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, doi: 10.12461/PKU.DXHX202406090
-
[9]
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, doi: 10.3866/PKU.DXHX202311057
-
[10]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, doi: 10.12461/PKU.DXHX202403010
-
[11]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, doi: 10.12461/PKU.DXHX202407058
-
[12]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, doi: 10.12461/PKU.DXHX202403087
-
[13]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240072
-
[14]
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305021
-
[15]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, doi: 10.3866/PKU.DXHX202309074
-
[16]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, doi: 10.3866/PKU.DXHX202310095
-
[17]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, doi: 10.12461/PKU.DXHX202410046
-
[18]
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, doi: 10.12461/PKU.DXHX202404057
-
[19]
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, doi: 10.12461/PKU.DXHX202405186
-
[20]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, doi: 10.3866/PKU.DXHX202312004
-
[1]
Metrics
- PDF Downloads(792)
- Abstract views(1856)
- HTML views(48)