Citation: GAO Ji-Ning, ZHAO Hua-Bo, QI Li-Min. Synthesis of Silver Sulfide Hollow Sphere-Silver Nanoparticle Heterostructures Based on Reactive Templates[J]. Acta Physico-Chimica Sinica, ;2012, 28(10): 2487-2492. doi: 10.3866/PKU.WHXB201209031 shu

Synthesis of Silver Sulfide Hollow Sphere-Silver Nanoparticle Heterostructures Based on Reactive Templates

  • Received Date: 17 July 2012
    Available Online: 3 September 2012

    Fund Project: 国家自然科学基金(21173010, 21073005, 51121091)资助项目 (21173010, 21073005, 51121091)

  • Silver sulfide hollow sphere-silver nanoparticle heterostructures were prepared by the simultaneous cation exchange and oxidation-reduction reactions of Cu2S hollow spheres with Ag+ ions in aqueous solution. The obtained Ag2S-Ag hybrid hollow spheres consisted of Ag2S hollow spheres about 600 nm in diameter and 20-30 nm in thickness with a single Ag nanoparticle attached to the outer surface of each Ag2S hollow sphere. The products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS). When CuS hollow spheres were used as the reactive template instead of Cu2S hollow spheres, Ag2S hollow spheres were the predominant product under similar reaction conditions, indicating that the Cu(I) in the Cu2S hollow spheres served as a reductant for reducing Ag+ ions to metallic Ag, and hence played a key role in the formation of the Ag2S-Ag hybrid hollow spheres. Furthermore, secondary deposition of Ag on the Ag2S-Ag hybrid hollow spheres resulted in the formation of larger Ag2S-Ag hybrid hollow spheres consisting of Ag2S hollow spheres with around a half of the surface coated by a Ag film.

  • 加载中
    1. [1]

      (1) Costi, R.; Saunders, A. E.; Banin, U. Angew. Chem. Int. Edit.2010, 49, 4878. doi: 10.1002/anie.v49:29

    2. [2]

      (2) Donega, C. D. Chem. Soc. Rev. 2011, 40, 1512. doi: 10.1039/c0cs00055h

    3. [3]

      (3) Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H. Adv. Mater. 2009, 21,3045. doi: 10.1002/adma.v21:30

    4. [4]

      (4) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U.Science 2004, 304, 1787. doi: 10.1126/science.1097830

    5. [5]

      (5) Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C.K.;Wang, L.W.; Alivisatos, A. P. Science 2007, 317, 355. doi: 10.1126/science.1142593

    6. [6]

      (6) Saruyama, M.; So, Y. G.; Kimoto, K.; Taguchi, S.; Kanemitsu,Y.; Teranishi, T. J. Am. Chem. Soc. 2011, 133, 17598. doi: 10.1021/ja2078224

    7. [7]

      (7) Habas, S. E.; Yang, P. D.; Mokari, T. J. Am. Chem. Soc. 2008,130, 3294. doi: 10.1021/ja800104w

    8. [8]

      (8) Yang, J.; Elim, H. I.; Zhang, Q. B.; Lee, J. Y.; Ji,W. J. Am.Chem. Soc. 2006, 128, 11921. doi: 10.1021/ja062494r

    9. [9]

      (9) Zhao, N. N.; Li, L. S.; Huang, T.; Qi, L. M. Nanoscale 2010, 2,2418. doi: 10.1039/c0nr00385a

    10. [10]

      (10) Leung, K. C. F.; Xuan, S. H.; Zhu, X. M.;Wang, D.W.; Chak,C. P.; Lee, S. F.; Ho,W. K.W.; Chung, B. C. T. Chem. Soc. Rev.2012, 41, 1911. doi: 10.1039/c1cs15213k

    11. [11]

      (11) Buck, M. R.; Bondi, J. F.; Schaak, R. E. Nat. Chem. 2012, 4, 37.

    12. [12]

      (12) Guo, X.; Zhang, Q.; Sun, Y. H.; Zhao, Q.; Yang, J. ACS Nano2012, 6, 1165. doi: 10.1021/nn203793k

    13. [13]

      (13) Sun, Y. P.; Riggs, J. E.; Rollins, H.W.; Guduru, R. J. Phys.Chem. B 1999, 103, 77. doi: 10.1021/jp9835014

    14. [14]

      (14) Xiang, J. H.; Cao, H. Q.;Wu, Q. Z.; Zhang, S. C.; Zhang, X. R.;Watt, A. A. R. J. Phys. Chem. C 2008, 112, 3580. doi: 10.1021/jp710597j

    15. [15]

      (15) Wang, H. L.; Qi, L. M. Adv. Funct. Mater. 2008, 18, 1249. doi: 10.1002/adfm.v18:8

    16. [16]

      (16) Xiao, C.; Xu, J.; Li, K.; Feng, J.; Yang, J. L.; Xie, Y. J. Am.Chem. Soc. 2012, 134, 4287. doi: 10.1021/ja2104476

    17. [17]

      (17) Rycenga, M.; Cobley, C. M.; Zeng, J.; Li,W. Y.; Moran, C. H.;Zhang, Q.; Qin, D.; Xia, Y. N. Chem. Rev. 2011, 111, 3669. doi: 10.1021/cr100275d

    18. [18]

      (18) Chaloupka, K.; Malam, Y.; Seifalian, A. M. Trends Biotechnol.2010, 28, 580. doi: 10.1016/j.tibtech.2010.07.006

    19. [19]

      (19) Pang, M. L.; Hu, J. Y.; Zeng, H. C. J. Am. Chem. Soc. 2010,132, 10771. doi: 10.1021/ja102105q

    20. [20]

      (20) Jiang, F. R.; Tian, Q.W.; Tang, M. H.; Chen, Z. G.; Yang, J. M.;Hu, J. Q. CrystEngComm 2011, 13, 7189. doi: 10.1039/c1ce05632h

    21. [21]

      (21) Liu, B.; Ma, Z. F. Small 2011, 7, 1587. doi: 10.1002/smll.v7.11

    22. [22]

      (22) Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U.Nano Today 2011, 6, 186. doi: 10.1016/j.nantod.2011.02.006

    23. [23]

      (23) Qi, L. M. Coord. Chem. Rev. 2010, 254, 1054. doi: 10.1016/j.ccr.2010.02.005

    24. [24]

      (24) Huang, T.; Qi, L. M. Sci. China Chem. 2010, 53, 365. doi: 10.1007/s11426-010-0041-z

    25. [25]

      (25) Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Science2004, 306, 1009. doi: 10.1126/science.1103755

    26. [26]

      (26) Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J.N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Adv. Funct. Mater. 2008,18, 1194. doi: 10.1002/adfm.v18:8

    27. [27]

      (27) Yang, J. H.; Qi, L. M.; Lu, C. H.; Ma, J. M.; Cheng, H. M.Angew. Chem. Int. Edit. 2005, 44, 598. doi: 10.1002/(ISSN)1521-3773

    28. [28]

      (28) Gao, J. N.; Li, Q. S.; Zhao, H. B.; Li, L. S.; Liu, C. L.; ng, Q.H.; Qi, L. M. Chem. Mater. 2008, 20, 6263. doi: 10.1021/cm801407q

    29. [29]

      (29) Speight, J. G. Langes's Handbook of Chemistry, 16th ed.;McGraw-Hill: New York, 2005.

    30. [30]

      (30) Rich, R. L. Inorganic Reactions in Water, 1st ed.; Springer-Verlag: Berlin Heidelberg, 2007; p 271.

    31. [31]

      (31) Cozzoli, P. D.; Pellegrino, T.; Manna, L. Chem. Soc. Rev. 2006,35, 1195. doi: 10.1039/b517790c

    32. [32]

      (32) Li,W. H.; Shavel, A.; Guzman, R.; Rubio-Garcia, J.; Flox, C.;Fan, J. D.; Cadavid, D.; Ibanez, M.; Arbiol, J.; Morante, J. R.;Cabot, A. Chem. Commun. 2011, 47, 10332. doi: 10.1039/c1cc13803k

    33. [33]

      (33) Kruszynska, M.; Borchert, H.; Bachmatiuk, A.; Rümmeli, M.H.; Büchner, B.; Parisi, J.; Kolny-Olesiak, J. ACS Nano 2012, 6,5889. doi: 10.1021/nn302448n

    34. [34]

      (34) Kryukov, A. I.; Stroyuk, A. L.; Zin'chuk, N. N.; Korzhak, A. V.;Kuchmii, S. Y. J. Mol. Catal. A-Chem. 2004, 221, 209. doi: 10.1016/j.molcata.2004.07.009


  • 加载中
    1. [1]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    4. [4]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 100022-0. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    6. [6]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    7. [7]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    13. [13]

      Liyong DUYi LIUGuoli YANG . Preparation and triethylamine sensing performance of ZnSnO3/NiO heterostructur. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 729-740. doi: 10.11862/CJIC.20240404

    14. [14]

      Qi HUANGYouyi WANGZhujian MAOZhonghui YEWeihan CHENJui-yeh RAUJian HUANG . Enhanced photocatalytic tetracycline degradation via 2D CdS/Ti3AlC2 MAX heterostructure. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2385-2398. doi: 10.11862/CJIC.20250159

    15. [15]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    18. [18]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    19. [19]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    20. [20]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(858)
  • Abstract views(2467)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return