Citation: CHEN Qiang, NULI Yanna, YANG Jun, KAILIBINUER Kerimu, WANG Jiulin. Effects of Current Collectors on the Electrochemical Performance of Electrolytes for Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201208032 shu

Effects of Current Collectors on the Electrochemical Performance of Electrolytes for Rechargeable Magnesium Batteries

  • Received Date: 20 June 2012
    Available Online: 3 August 2012

    Fund Project: 国家自然科学基金(20603022, 20973112)资助项目 (20603022, 20973112)

  • The effects of metal (platinum, nickel, stainless steel (SS), copper and aluminum) and carbon paper (carbon fiber, graphite foil and carbon cloth) current collectors on the anodic stability and magnesium deposition-dissolution of the electrolytes (Mg(AlCl2BuEt)2/THF and (PhMgCl)2-AlCl3/THF) for rechargeable magnesium batteries were studied by cyclic voltammogram and constant current deposition-dissolution measurements. Nickel, stainless steel, copper and aluminum current collectors occur corrosion upon charging process. Nickel or stainless steel exhibits a higher stability, which can be used as the current collector for the cathode materials with a charging voltage under 2.1V (vs Mg/Mg2+). While copper is suitable for the cathode with a charging voltage under 1.8V (vs Mg/Mg2+). Furthermore, carbon paper current collectors have a higher anodic stability than metals. Carbon cloth is appropriate for the cathode materials with a charging voltage under 2.25V (vs Mg/Mg2+) in Mg(AlCl2BuEt)2/THF and 2.95V (vs Mg/Mg2+) in (PhMgCl)2-AlCl3/THF.

  • 加载中
    1. [1]

      (1) Gre ry, T. D.; Hoffman, R. J.;Winterton, R. C. J. Electrochem. Soc. 1990, 137, 775. doi: 10.1149/1.2086553

    2. [2]

      (2) Aurbach, D.; Lu, Z.; Schechter, A.; fer, Y.; Gizbar, H.;Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature2000, 407, 724. doi: 10.1038/35037553

    3. [3]

      (3) Yuan, H. T.;Wu, F.;Wu, X. L.; Li, Q. Battery Bimonthly 2002,32, 14. [袁华堂, 吴峰, 武绪丽, 李强. 电池, 2002, 32,14.]

    4. [4]

      (4) Shen, J.; Peng, B.; Tao, Z. L.; Chen, J. Progess in Chemistry2012, 22, 515. [沈健, 彭博, 陶占良, 陈军. 化学进展,2010, 22, 515.]

    5. [5]

      (5) Zheng, Y. P.; NuLi, Y. N.; Yang, J.; Chen, Q.;Wang, J. L.Chemical Industry and Engineering Progress 2011, 30 (5),1024. [郑育培, 努丽燕娜, 杨军, 陈强, 王久林.化工进展, 2011, 30 (5), 1024.]

    6. [6]

      (6) Zhao, Q. S.; Nuli, Y. N.; Guo, Y. S.; Yang, J.;Wang, J. L.Progress in Chemistry 2011, 23, 1598. [赵青松, 努丽燕娜,郭永胜, 杨军, 王久林. 化学进展, 2011, 23, 1598.]

    7. [7]

      (7) Aurbach, D.; Schechter, A.; Moshkovich, M.; Cohen, Y.;J. Electrochem. Soc. 2001, 148, A1004.

    8. [8]

      (8) Aurbach, D.; Gizbar, H.; Schechter, A.; Chusid, O.; ttlieb, H.E.; fer, Y.; ldberg, I. J. Electrochem. Soc. 2002, 149, A115.

    9. [9]

      (9) Gizbar, H.; Vestfrid, Y.; Chusid, O.; fer, Y.; ttlieb, H. E.;Marks, V.; Aurbach, D. Organometallics 2004, 23, 3826. doi: 10.1021/om049949a

    10. [10]

      (10) Vestfried, Y.; Chusid, O.; fer, Y.; Aped, P.; Aurbach, D.Organometallics 2007, 26, 3130. doi: 10.1021/om061076s

    11. [11]

      (11) Viestfried, Y.; Levi, M. D.; fer, Y.; Aurbach, D.J. Electroanal. Chem. 2005, 576, 183. doi: 10.1016/j.jelechem.2004.09.034

    12. [12]

      (12) Aurbach, D.; Suresh, G. S.; Levi, E.; Mitelman, A.; Mizrahi, O.;Chusid, O.; Brunelli, M. Adv. Mater. 2007, 19, 4260. doi: 10.1002/(ISSN)1521-4095

    13. [13]

      (13) Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; ttlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D.J. Electrochem. Soc. 2008, 155, A103.

    14. [14]

      (14) Pour, N.; fer, Y.; Major, D. T.; Aurbach, D. J. Am. Chem. Soc.2011, 133, 6270. doi: 10.1021/ja1098512

    15. [15]

      (15) Arora, P.; White, R. E.; Doyle, M. J. Electrochem. Soc. 1998,145, 3647. doi: 10.1149/1.1838857

    16. [16]

      (16) Tarascon, J.; Guyomard, D. Solid State Ionics 1994, 69, 293.doi: 10.1016/0167-2738(94)90418-9

    17. [17]

      (17) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Takehara, Z.J. Electrochem. Soc. 1995, 142, 1383. doi: 10.1149/1.2048586

    18. [18]

      (18) Dahn, J. R; Fuller, E.W.; Obrovac, M.; Von Sacken, U. Solid State Ionics 1994, 69, 265. doi: 10.1016/0167-2738(94)90415-4

    19. [19]

      (19) Amatucci, G.; Tarascon, J.; Klein, L. Solid State Ionics 1996,83, 167.

    20. [20]

      (20) Morita, M.; Shibata, T.; Yoshimoto, N.; Ishikawa, M.Electrochim. Acta 2002, 47, 2787. doi: 10.1016/S0013-4686(02)00164-0

    21. [21]

      (21) Kanamura, K. J. Power Sources 1999, 81-82, 123.

    22. [22]

      (22) Peng, C. X. Research on the Compatibility between CurrentCollectors and New Ionic Liquid Electrolytes for LithiumSecondary Batteries. Ph. D. Dissertation, Shanghai JiaotongUniversity, Shanghai, 2008. [彭成信. 锂离子电池集流体与新型离子液体电解液的相容性及界面电化学行为研究[D].上海: 上海交通大学, 2008.]

    23. [23]

      (23) Ni, J. F.; Zhou, H. H.; Chen, J. T.; Zhang, X.Y. Battery Bimonthly2005, 35, 128. [倪江锋, 周恒辉, 陈继涛, 张新祥. 电池,2005, 35, 128.]

    24. [24]

      (24) Iwakura, C.; Fukumoto, Y.; Inoue, H.; Ohashi, S.; Kobayashi,S.; Tada, H.; Abe, M. J. Power Sources 1997, 68, 3013.

    25. [25]

      (25) Dai, Y. H.; Zhou, Y. M.;Wang, Q.; Tang, Y.W.; Lu, T. H.; Shen,T. Chinese Battery Industry 2007, 12, 31. [戴跃华, 周益明,王青, 唐亚文, 陆天虹, 沈涛. 电池工业, 2007, 12, 31.]

    26. [26]

      (26) Aurbach, D.; Turgeman, R.; Chusid, O.; fer, Y. Electrochem. Commun. 2001, 3, 252. doi: 10.1016/S1388-2481(01)00148-5

    27. [27]

      (27) Liebenow, C.; Yang, Z.; Lobitz, P. Electrochem. Commun. 2000,2, 641. doi: 10.1016/S1388-2481(00)00094-1

    28. [28]

      (28) Tang, Z, Y.; He, Y. B.; Liu, Y. G.; Liu, Q.; Yang, X. X. Corrosion Science and Protection Technology 2007, 19, 265. [唐致远,贺艳兵, 刘元刚, 刘强, 阳晓霞. 腐蚀科学与防腐技术, 2007,19, 265.]

    29. [29]

      (29) Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui,M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5, 5941.


  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240047

    4. [4]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305040

    5. [5]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305053

    6. [6]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100106

    7. [7]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, doi: 10.3866/PKU.DXHX202308094

    8. [8]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305059

    9. [9]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20250023

    10. [10]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202307034

    11. [11]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240238

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100087

    14. [14]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, doi: 10.12461/PKU.DXHX202412070

    15. [15]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, doi: 10.3866/PKU.DXHX202401060

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240270

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100094

    20. [20]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240363

Metrics
  • PDF Downloads(1084)
  • Abstract views(3138)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return