Citation: WEN Wen, GAO Xiao-Ya, SONG Zhi-Ying, HAN Dong, WANG Juan, ZHU Mei-Xia, ZHANG Ai-Ping. Preparation of Magnetic Targeted Fe3O4-TiO2Nanoparticles and Their Photocatalytic Killing Effect on Hepatoma Carcinoma Cells[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206151 shu

Preparation of Magnetic Targeted Fe3O4-TiO2Nanoparticles and Their Photocatalytic Killing Effect on Hepatoma Carcinoma Cells

  • Received Date: 17 April 2012
    Available Online: 15 June 2012

    Fund Project: 山西省自然科学基金(2010011048-1) (2010011048-1) 太原市2012 年科学技术发展计划大学生创新创业项目(120164073) (120164073)

  • Fe3O4-TiO2 nanoparticles with different doped amounts of Fe3O4 were prepared by three sol-gel methods at low temperature. They were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy (FS), and magnetic performance. The nanoparticles which had uniform coating, od dispersion, excellent magnetism, and high photocatalytic activity were screened. The survival rates of hepatoma carcinoma cells (HepG2) were measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation assay, and the photo-killing effect of screened Fe3O4-TiO2 nanoparticles on HepG2 cells was investigated in different external magnetic fields. The results indicated that the core-shell structure 5% (mass fraction) Fe3O4-TiO2 nanoparticles prepared by the third method displayed od dispersion in suspension, high photocatalytic activity, and excellent magnetic responsivity. The average particle size of the 5%Fe3O4-TiO2 particles was 50 nm. Meanwhile, the photoresponsive range of TiO2 was extended to 444 nm. In the external magnetic fields, the Fe3O4-TiO2 nanoparticles excited either by ultraviolet or visible light showed no obvious difference on killing effect, while in both cases had a higher killing effect than that of nano-TiO2. Furthermore, the killing effect was enhanced with the increased magnetic field strength in the range of 0-1.0 T.

  • 加载中
    1. [1]

      (1) Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1. doi: 10.1016/S1389-5567(00)00002-2

    2. [2]

      (2) Dodd, N. J. F.; Jha, A. N. Mutation Res. 2009, 660, 79. doi: 10.1016/j.mrfmmm.2008.10.007

    3. [3]

      (3) Wang, J.; Guo, Y.W.; Liu, B.; Jin, X. D.; Liu, L. J.; Xu, R.;Kong, Y. M.;Wang, B. X. Ultrason. Sonochem. 2011, 18, 1028.doi: 10.1016/j.ultsonch.2010.12.006

    4. [4]

      (4) Huang, N. P.; Xu, M. H.; Yuan, C.W.; Yu, R. R. J. Photochem. Photobiol. A: Chem. 1997, 108, 229. doi: 10.1016/S1010-6030(97)00093-2

    5. [5]

      (5) Zhang, A. P.; Sun, Y. P. World J. Gastroenterol. 2004, 10, 3191.

    6. [6]

      (6) Zhu, R. R.;Wang, S. L.; Chao, J.; Shi, D. L.; Zhang, R.; Sun, X.Y.; Yao, S. D. Mater. Sci. Eng. C 2009, 29, 691. doi: 10.1016/j.msec.2008.12.023

    7. [7]

      (7) La pati, N.; Kitsiou, P. V.; Kontos, A. I.; Venieratos, P.;Kotsopoulou, E.; Kontos, A. G.; Dionysiou, D. D.; Pispas, S.;Tsilibary, E. C.; Falaras, P. J. Photochem. Photobiol. A: Chem.2010, 214, 215. doi: 10.1016/j.jphotochem.2010.06.031

    8. [8]

      (8) Sun, Y.; Xu, J.; Cai,W. B.; Jiang, Z. Y. Acta Phys. -Chim. Sin.2008, 24, 1359. [孙毅, 许娟, 蔡文斌, 江志裕. 物理化学学报, 2008, 24, 1359.] doi: 10.3866/PKU.WHXB20080806

    9. [9]

      (9) Janczyk, A.; Glubisz, A.W.; Urbanska, K.; Kisch, H.; Stochel,G.; Macyk,W. Free Radical Biol. Med. 2008, 44, 1120. doi: 10.1016/j.freeradbiomed.2007.12.019

    10. [10]

      (10) Liu, L.; Miao, P.; Xu, Y. Y.; Tian, Z. P.; Zou, Z. G.; Li, G. X.J. Photochem. Photobiol. B: Biol. 2010, 98, 207. doi: 10.1016/j.jphotobiol.2010.01.005

    11. [11]

      (11) Alexiou, C.; Arnold,W.; Klein, R. J.; Parak, F. G.; Hulin, P.;Bergemann, C.; Erhardt,W.;Wagenpfeil, S.; Lübbe, A. S.Cancer Res. 2000, 60, 6641.

    12. [12]

      (12) Zhang, Y.; Kohler, N.; Zhang, M. Biomaterials 2002, 23, 1553.doi: 10.1016/S0142-9612(01)00267-8

    13. [13]

      (13) Lübbe, A. S.; Alexiou, C.; Bergemann, C. J. Surg. Res. 2001,95, 200. doi: 10.1006/jsre.2000.6030

    14. [14]

      (14) Alexiou, C.; Schmid, R. J.; Jur ns, R.; Kremer, M.;Wanner,G.; Bergemann, C.; Huenges, E.; Nawroth, T.; Arnold,W.;Parak, F. G. Eur. Biophys. J. 2006, 35, 446. doi: 10.1007/s00249-006-0042-1

    15. [15]

      (15) Alvarez, P. M.; Jaramillo, J.; Lopez-Pinero, F.; Plucinski, P. K.Appl. Catal. B: Environ. 2010, 100, 338. doi: 10.1016/j.apcatb.2010.08.010

    16. [16]

      (16) Chen,W. J.; Tsai, P. J.; Chen, Y. C. Small 2008, 4, 485. doi: 10.1002/smll.200701164

    17. [17]

      (17) He, Q. H.; Zhang, Z. X.; Xiong, J.W.; Xiong, Y. Y.; Xiao, H.Opt. Mater. 2008, 31, 380. doi: 10.1016/j.optmat.2008.05.011

    18. [18]

      (18) Shrestha, N. K.; Macak, M. J.; Felix, S. S.; Hahn, R.; Mierke, C.T.; Fabry, B.; Schmuki, P. Angew. Chem. 2008, 120, 1. doi: 10.1002/ange.200790254

    19. [19]

      (19) Jolivet, J. P.; Chanéac, C.; Tronc, E. Chem. Commun. 2004, 477.

    20. [20]

      (20) Bickley, R. I.; nzález, C. T.; Palmisano, L.; Tilley, R. J. D.;Williams, J. M. Mater. Chem. Phys. 1997, 51, 47. doi: 10.1016/S0254-0584(97)80265-9

    21. [21]

      (21) Ao, Y. H.; Xu, J. J.; Fu, D. G.; Shen, X.W.; Yuan, C.W. Sep. Purif. Technol. 2008, 61, 436. doi: 10.1016/j.seppur.2007.12.007

    22. [22]

      (22) Li, X. Y.;Wang, J. Y.;Wang, X. Y.; Su, D.; Han, X. J.; Du, Y. C.Chem. J. Chin. Univ. 2010, 31, 662. [李秀莹, 王靖宇, 王晓宇, 苏丹, 韩喜江, 杜耘辰. 高等学校化学学报, 2010, 31,662.]

    23. [23]

      (23) Khanna, P. K.; Singh, N.; Charan, S. Mater. Lett. 2007, 61, 4725.

    24. [24]

      (24) Hu, M. L.; Bai, C. G.; Xu, S. M.; Xu, G.; Liang, D. Acta Phys. -Chim. Sin. 2008, 24, 2287. [扈玫珑, 白晨光, 徐盛明,徐刚, 梁栋. 物理化学学报, 2008, 24, 2287.] doi: 10.3866/PKU.WHXB20081223

    25. [25]

      (25) Chen, Q. C.; Deng, H. Y.; Ma, Y. M. Journal of China Surfactant Detergent & Cosmetics 2002, 32, 35. [陈庆春,邓慧宇, 马燕明. 日用化学工业, 2002, 32, 35.]

    26. [26]

      (26) Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Conesa, J. C.;Yeung, K. L.; Augugliaro, V.; Soria, J. Langmuir 2001, 17, 5368.doi: 10.1021/la010153f

    27. [27]

      (27) Li, M. L.; Xu, M. X.; Pang, X. M.; Fang, H. B. J. Chin. Ceram. Soc. 2006, 34, 1147. [李明利, 徐明霞, 庞学满, 方海波. 硅酸盐学报, 2006, 34, 1147.]

    28. [28]

      (28) Li, H. P.;Wang, M. D.; Zou, G. R. J. Mol. Catal. 2008, 22,555. [李和平, 王庙东, 邹贵荣. 分子催化, 2008, 22, 555.]

    29. [29]

      (29) Townley, H. E.; Rapa, E.;Wakefield, G.; Dobson, P. J.Nanomed.: Nanotechnol. Biol. Med. 2011, 8, 526.


  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406021

    4. [4]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202404030

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240067

    6. [6]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202308036

    8. [8]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230349

    10. [10]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240440

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202305043

    15. [15]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310008

    17. [17]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202312007

    19. [19]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202402016

Metrics
  • PDF Downloads(1191)
  • Abstract views(2048)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return