Citation: LI Guo-Hua, CHEN Dan, ZHENG Xiang, XIE Wei-Miao, CHENG Yuan. Preparation and Electrocatalytic Activity of WC/W2C Nanocomposite with Core-Shell Structure[J]. Acta Physico-Chimica Sinica doi: 10.3866/PKU.WHXB201206042 shu

Preparation and Electrocatalytic Activity of WC/W2C Nanocomposite with Core-Shell Structure

  • Received Date: 16 March 2012
    Available Online: 4 June 2012

    Fund Project: 国家自然科学基金(21173193)资助项目 (21173193)

  • A monotungsten carbide (WC)/bitungsten carbide (W2C) nanocomposite having a core-shell structure was prepared through a combination of surface coating and in situ reduction-carbonization, using ammonia meta-tungsten as tungsten source and iron oxide hydroxide as a hard support. The crystal phase, morphology, microstructure, and chemical components of the samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray energy dispersion spectroscopy (EDS). The results show that after calcination, the morphology, the crystal phases of the support, and the coating layer around the support are changed. After acid dissolution, reduction, and carbonization, the crystal phase of the final product is composed of WC and W2C; the microstructure of the sample particle is a core-shell structure in which WC forms the core and W2C forms the shell. Based on the characterization results, the formation mechanism of the core-shell structure is discussed. The electrocatalytic activities of the samples for methanol electrooxidation were investigated by cyclic voltammetry with a three-electrode system in acidic, neutral, alkaline aqueous solutions. The results show that the electrocatalytic activity of the sample for methanol oxidation is higher than that of tungsten carbide particles and hollow microsphere tungsten carbide. These indicate that the electrocatalytic activity of tungsten carbide can be improved through the formation of core-shell structure, and it is one of the efficient ways to improve the electrocatalytic activity of tungsten carbide.

  • 加载中
    1. [1]

      (1) Levy, R. B.; Stauffer, M. C. Science 1973, 181, 547. doi: 10.1126/science.181.4099.547

    2. [2]

      (2) Wang, G. J.; Liu, R. Z.; Chang, J. S. J. Qingdao Univ. 2001, 16,51. [王广建, 刘荣展, 常俊石. 青岛大学学报, 2001, 16, 51.]

    3. [3]

      (3) Zhu, L. Z.; Chen, Y. F.; Zhang, Q. Y. Chin. J. Appl. Chem. 1999,16, 52. [朱龙章, 陈宇飞, 张庆元. 应用化学, 1999, 16, 52.]

    4. [4]

      (4) Ma, C. A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6, 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6, 622.] doi: 10.3866/PKU.WHXB19900521

    5. [5]

      (5) Palanker, V. S.; Gajyev, R. A.; Sokolsky, D. V. Electrochim. Acta 1977, 22, 133. doi: 10.1016/0013-4686(77)85025-1

    6. [6]

      (6) Zellner, M. B.; Chen, J. G. Catal. Today 2005, 99, 299. doi: 10.1016/j.cattod.2004.10.004

    7. [7]

      (7) McIntyre, D. R.; Burstein, G. T.; Vossen, A. J. Power Sources2002, 107, 67. doi: 10.1016/S0378-7753(01)00987-9

    8. [8]

      (8) Li, G. H.; Tian,W.; Tang, J. Y.; Ma, C. A. Acta Phys. -Chim. Sin.2007, 23, 1370. [李国华, 田伟, 汤俊艳, 马淳安. 物理化学学报, 2007, 23, 1370.] doi: 10.3866/PKU.WHXB20070912

    9. [9]

      (9) Zheng, Y. F.; Lu, Y. P.; Mo,W. M.; Li, G. H.; Zhao, N. J. Inorg. Mater. 2010, 25, 1139. [郑遗凡, 陆月萍, 莫卫民, 李国华,赵娜. 无机材料学报, 2010, 25, 1139.] doi: 10.3724/SP.J.1077.2010.01139

    10. [10]

      (10) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26, 1317. doi: 10.3866/PKU.WHXB20100337

    11. [11]

      (11) Okamoto, H.; Kawamura, G.; Ishikawa, A.; Kudo, T.J. Electrochem. Soc. 1987, 134, 1653. doi: 10.1149/1.2100730

    12. [12]

      (12) Zhong, C. J.; Mathew, M. M. Adv. Mater. 2001, 13, 1507. doi: 10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#

    13. [13]

      (13) Cachet-Vivier, C.; Vivier, V.; Cab, C. S.; Nedelec, J. Y.; Yu, L. T.Electrochim. Acta 2001, 47, 181. doi: 10.1016/S0013-4686(01)00549-7

    14. [14]

      (14) Wu, L. S.; Bai, G.; Yuan, Z. X. Minerals and Rocks; ChemicalIndustry Press: Beijing, 2004; pp 2-3. [吴良士, 白鸽, 袁忠信. 矿物与岩石. 北京: 化学工业出版社, 2004: 2-3.]

    15. [15]

      (15) Shen, Y. F. Solid State Physics Foundation Course; ChemicalIndustry Press: Beijing, 2005; pp 254-257. [沈以赴. 固体物理学基础教程. 北京: 化学工业出版社, 2005: 254-257.]

    16. [16]

      (16) Ma, C. A.; Zhang,W. M.; Li, G. H.; Zheng, Y. F.; Zhou, B. X.;Cheng, D. H. Acta Chim. Sin. 2005, 63, 1151. [马淳安, 张维民, 李国华, 郑遗凡, 周邦新, 成旦红. 化学学报, 2005, 63,1151.]

    17. [17]

      (17) Li, G. H.; Zhu, J. T.; Tian,W.; Lou, Y.W.; Ma, C. A. Chin. J. Inorg. Chem. 2007, 23, 2044. [李国华, 竺金涛, 田伟, 楼颖伟, 马淳安. 无机化学学报, 2007, 23, 2044.]

    18. [18]

      (18) Frelink, T.; Visscher,W.; VanVeen, J. A. R. J. Electroanal. Chem. 1995, 382, 65. doi: 10.1016/0022-0728(94)03648-M


  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230369

    2. [2]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240065

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240270

    4. [4]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240350

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240221

    6. [6]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240416

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230239

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240201

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240256

    17. [17]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20230225

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, doi: 10.11862/CJIC.20240192

    19. [19]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, doi: 10.1016/j.actphy.2025.100072

Metrics
  • PDF Downloads(868)
  • Abstract views(2308)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return