Citation: LAN Zhi-Qiang, XIAO Xiao, SU Xin, CHEN Jie-Shi, GUO Jin. Effect of Doping with Aluminium on the Electronic Structure and Hydrogen Storage Properties of Mg2Ni Alloy[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1877-1884. doi: 10.3866/PKU.WHXB201205281 shu

Effect of Doping with Aluminium on the Electronic Structure and Hydrogen Storage Properties of Mg2Ni Alloy

  • Received Date: 28 January 2012
    Available Online: 28 May 2012

    Fund Project: 国家自然科学基金(51071054, 50861003) (51071054, 50861003) 广西科学基金重点项目(2010GXNSFD013004) (2010GXNSFD013004)

  • Using plane wave pseudopotential methods based on density functional theory, the unit cell volumes, the electronic densities of states, the bond orders, the charge populations, and the formation enthalpies of Mg2-xAlxNiH4 (x=0, 0.125, 0.25) alloys were calculated. By analyzing atom bonding and structural stability, the effects of partially substituting Al for Mg on the structure and hydrogen storage property of the alloys and their hydrides were investigated. It was shown that the unit cell volume of the Mg2Ni alloy decreases with the increase of Al content; the decreased unit cell volume hinders the incorporation of hydrogen atoms, thus reducing the hydrogen storage capacity. For Mg2-xAlxNiH4 (x=0, 0.125, 0.25) hydrides, the Mg-H and Al-H interactions are much weaker than the Ni-H interaction. However, the Ni-H interaction is weakened and the hydride enthalpy of formation decreases with increased Al content. Although the stability of the hydride structure is weakened, hydrogen desorption kinetics for the Mg2Ni hydride can be improved with the partial substitution of Al for Mg.

  • 加载中
    1. [1]

      (1) Grochala,W.; Edwards, P. P. Chem. Rev. 2004, 104 (3), 1283.doi: 10.1021/cr030691s

    2. [2]

      (2) Schlapbach, L.; Züttel, A. Nature 2001, 414, 353. doi: 10.1038/35104634

    3. [3]

      (3) Reilly, J. J.;Wiswall, R. H. Inorg. Chem. 1968, 7, 22544.

    4. [4]

      (4) Yang, H. B.; Yuan, H. T.; Ji, J. T.; Sun, H.; Zhou, Z. X.; Zhang,Y. S. J. Alloy. Compd. 2002, 330, 640. doi: 10.1016/S0925-8388(01)01535-3

    5. [5]

      (5) Li, Q.; Jiang, L. J.; Lin, Q.; Zhou, G. Z.; Zhan, F.; Zheng, Q.;Wei, X. Y. The Chinese Journal of Nonferrous Metals 2003, 13 (4), 864. [李谦, 蒋利军, 林勤, 周国治, 詹锋, 郑强,尉秀英. 中国有色金属学报, 2003, 13 (4), 864.]

    6. [6]

      (6) Lu, G. L.; Chen, L. S.; Hu, X. R.;Wang, L. B.; Yuan, H. T. Acta Metall. Sin. 2001, 37 (5), 459. [吕光烈, 陈林深, 胡秀荣, 王连邦, 袁华堂. 金属学报, 2001, 37 (5), 459.]

    7. [7]

      (7) Kalisvaart,W. P.; Harrower, C. T.; Haagsma, J.; Zahiri, B.;Luber, E. J.; Ophus, C.; Poirier, E.; Fritzsche, H.; Mitlin, D. Int. J. Hydrog. Energy 2010, 35, 2091. doi: 10.1016/j.ijhydene.2009.12.013

    8. [8]

      (8) Fan, C.; Ju, X.;Wan, C. Int. J. Hydrog. Energy 2010, 35, 8044.doi: 10.1016/j.ijhydene.2010.02.117

    9. [9]

      (9) Garcia, G. N.; Abriata, J. P.; Sofo, J. O. Phys. Rev. B 2002, 65,064306. doi: 10.1103/PhysRevB.65.064306

    10. [10]

      (10) Michiel, J. V. S.; Gilles, A. D.W.; Geert, B. Phys. Rev. B 2007,76, 75125. doi: 10.1103/PhysRevB.76.075125

    11. [11]

      (11) Jasen, P. V.; nzalez, E. A.; Brizuela, G.; Nagel, O. A.; nzález, G. A.; Juan, A. Int. J. Hydrog. Energy 2007, 32,4943. doi: 10.1016/j.ijhydene.2007.08.011

    12. [12]

      (12) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.;Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys: Condes. Matter2002, 14, 2717. doi: 10.1088/0953-8984/14/11/301

    13. [13]

      (13) Marlo, M.; Milman, V. Phys. Rev. B 2000, 62, 2899. doi: 10.1103/PhysRevB.62.2899

    14. [14]

      (14) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892. doi: 10.1103/PhysRevB.41.7892

    15. [15]

      (15) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188

    16. [16]

      (16) Darriet, B.; Soubeyroux, J. L.; Pezat, M.; Fruchart, D. J. Less. Common Met. 1984, 103 (1), 153. doi: 10.1016/0022-5088(84)90374-6

    17. [17]

      (17) Hsu, F. K.; Hsu, C.W.; Chang, J. K.; Lin, C. K.; Lee, S. L.;Jiang. C. E. Int. J. Hydrog. Energy 2010, 35, 13247. doi: 10.1016/j.ijhydene.2010.09.034

    18. [18]

      (18) Zhang, Y. H.; Ren, H. P.; Li, B.W.; Guo, S. H.; Pang, Z. G.;Wang, X. L. Int. J. Hydrog. Energy 2009, 34, 8144. doi: 10.1016/j.ijhydene.2009.07.097

    19. [19]

      (19) Gasiorowski, A.; Iwasieczko,W.; Skoryna, D.; Drulis, H.;Jurczyk, M. J. Alloy. Compd. 2004, 364, 283. doi: 10.1016/S0925-8388(03)00544-9

    20. [20]

      (20) Zhou, G. D.; Duan, L. Y. Fundamentals of Structural Chemistry,4th ed.; Peking University Press: Beijing, 2007; p 51. [周公度, 段连运. 结构化学基础(第四版). 北京: 北京大学出版社,2007: 51.]

    21. [21]

      (21) Janot, R.; Aymard, L.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.J. Phys. Chem. Solids 2004, 65, 529. doi: 10.1016/j.jpcs.2003.08.038

    22. [22]

      (22) Zhang, R. J.;Wang, Y. M.; Chen, D. M.; Yang, R.; Yang, K. Acta Mater. 2006, 54, 465. doi: 10.1016/j.actamat.2005.09.027

    23. [23]

      (23) Zolliker, P.; Yvon, K.; Jorgensen, J. D.; Rotella, F. J. Inorg. Chem. 1986, 25, 3590. doi: 10.1021/ic00240a012

    24. [24]

      (24) Li, S. L.;Wang, P.; Chen,W.; Luo, G.; Chen, D. M.; Yang, K.J. Alloy. Compd. 2009, 485, 867. doi: 10.1016/j.jallcom.2009.06.111

    25. [25]

      (25) Broedersz, C. P.; Gremaud, R. D. B.; Griessen, R. L.; Løvvik, O.M. Phys. Rev. B 2008, 77, 24204. doi: 10.1103/PhysRevB.77.024204


  • 加载中
    1. [1]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    2. [2]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    10. [10]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    11. [11]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    14. [14]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    15. [15]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(640)
  • Abstract views(2364)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return