Citation: YANG Shu, YANG Xiao-Mei, XIE Xiao-Guang. Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO[J]. Acta Physico-Chimica Sinica, ;2012, 28(08): 1892-1898. doi: 10.3866/PKU.WHXB201205241 shu

Theoretical Study of Gas-Phase Reaction of YS+ (1Σ+, 3Φ) with COS: YS++COS→YS2++CO

  • Received Date: 7 February 2012
    Available Online: 24 May 2012

    Fund Project: 国家自然科学基金(30930074)资助项目 (30930074)

  • The gas-phase reactions of YS+ (1Σ+, 3Φ) with an S-transfer reagent (COS), YS++COS→YS2++CO, were studied using density functional theory at the B3LYP/6-311+G* level. Four parallel reaction pathways were identified on both the ground- and excited-state surfaces. The mechanisms and the geometrical change trends on the different surfaces are quite different, except in the case of one reaction channel. The experimentally observed endothermic feature of the formation of YS2+ can be attributed to three reaction paths, A, B, and C, with calculation barriers of 28.3, 140.5, and 120.2 kJ mol-1, respectively, on the ground singlet surface. Our calculation results show that the title reactions have no two-state reactivity and the exothermic feature of the YS2+ cross-section observed in the experiments is attributed to reaction of the residual excited-state of YS+ in the reactants.

  • 加载中
    1. [1]

      (1) Stiefel, E. I.; Matsmoto, K. Transition Metal Sulfur Chemistry, ACS Symposium Series 653, 1st ed.; American ChemicalSociety:Washington DC, 1996; pp 2-38.

    2. [2]

      (2) Bhadure, M.; Mitchell, P. C. H. J. Catal. 1982, 77, 132. doi: 10.1016/0021-9517(82)90153-1

    3. [3]

      (3) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 208. doi: 10.1021/j100364a034

    4. [4]

      (4) Schults, R. H.; Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1988, 110, 411. doi: 10.1021/ja00210a017

    5. [5]

      (5) Armentrout, P. B. Annu. Rev. Phys. Chem. 1990, 41, 313. doi: 10.1146/annurev.pc.41.100190.001525

    6. [6]

      (6) Castleman, A.W.; Keesee, R. G. Chem. Rev. 1986, 86, 589. doi: 10.1021/cr00073a005

    7. [7]

      (7) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.; Armentrout,P. B. J. Phys. Chem. A 2000, 104 (21), 5046. doi: 10.1021/jp994228o

    8. [8]

      (8) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2006, 249/250, 263.

    9. [9]

      (9) Kretzschmar, I.; Fiedler, A.; Harvey, J. N.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 1997, 101 (35), 6252. doi: 10.1021/jp971941+

    10. [10]

      (10) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Rue, C.;Armentrout, P. B. J. Phys. Chem. A 1998, 102 (49), 10060. doi: 10.1021/jp982199w

    11. [11]

      (11) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Int. J. Mass Spectrometry 2003, 228, 439.

    12. [12]

      (12) Armentrout, P. B.; Kretzschmar, I. J. Phys. Chem. A 2009, 113 (41), 10955. doi: 10.1021/jp907253r

    13. [13]

      (13) Rue, C.; Armentrout, P. B.; Kretzschmar, I.; Schröder, D.;Schwarz, H. J. Phys. Chem. A 2002, 106 (42), 9788. doi: 10.1021/jp020161k

    14. [14]

      (14) Flemmig, B.; Kretzschmar, I.; Friend, C. M.; Hoffmann, R.J. Phys. Chem. A 2004, 108 (15), 2972. doi: 10.1021/jp0369701

    15. [15]

      (15) Frommer, J.; Nachtegaal, M.; Czekaj, I.;Weng, T.; Kretzschmar,R. J. Phys. Chem. A 2009, 113 (44), 12171. doi: 10.1021/jp902604p

    16. [16]

      (16) Villarroel, O. J.; Laboren, I. E.; Bellert, D. J. J. Phys. Chem. A2012, 116 (12), 3081. doi: 10.1021/jp2047135

    17. [17]

      (17) Gennari, M.; Retegan, M.; DeBeer, S.; Pécaut, J.; Neese, F.;Collomb, M.; Duboc, C. Inorg. Chem. 2011, 50 (20), 10047.doi: 10.1021/ic200899w

    18. [18]

      (18) Chandrasekhar, V.; Senapati, T.; Dey, A,; Das, S.; Kalisz, M.;Clérac, R. Inorg. Chem. 2012, 51 (4), 2031. doi: 10.1021/ic201463g

    19. [19]

      (19) Yang, X.; Yu, S.; Li, T.; Yao, L.; Hu, D.; Xie, X. J. Mol. Struct. -Theochem 2009, 901 (1/3), 34.

    20. [20]

      (20) Gao, S. L.; Xu, J. L.; Xie, X. G. Chem. Phys. 2005, 312, 187.doi: 10.1016/j.chemphys.2004.11.040

    21. [21]

      (21) Xie, X.; Gao, S.; Xu, J. J. Mol. Struct. -Theochem 2005, 715 (1/3), 65.

    22. [22]

      (22) Yu, S.; Li, T.; Yao, L.; Yang, X.; Xie, X. J. Mol. Struct. - Theochem 2009, 901 (1/3), 249.

    23. [23]

      (23) udbout, N.; Salahub, D. R.; Andzelm, J.;Wimmer, E. Can. J. Chem. 1992, 70, 560. doi: 10.1139/v92-079

    24. [24]

      (24) Chase, M.W.; Davies, C. A.; Downey, J. R.; Frurip, D. J.;McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data1985, 14 (Suppl. 1), 1112.

    25. [25]

      (25) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353. doi: 10.1021/cr980404y

    26. [26]

      (26) Read, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88,899. doi: 10.1021/cr00088a005

    27. [27]

      (27) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.

    28. [28]

      (28) Kretzschmar, I.; Schröder, D.; Schwarz, H.; Armentrout, P. B.Advances in Metal and Semi-Conductor Clusters: Metal-Ligand Bonding and Metal-Ion Solvation, 1st ed.; Elsevier: New York,2001; Vol. 5, p347.


  • 加载中
    1. [1]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    6. [6]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    13. [13]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    14. [14]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    17. [17]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    18. [18]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(614)
  • Abstract views(2315)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return