Citation:
JIN Rong-Rong, LI Li-Fang, XU Xue-Feng, LIAN Ying-Hui, ZHAO Fan. Layered Double Hydroxide Supported Palladium Nanoparticles for Electrocatalytic Oxidation of Hydrazine[J]. Acta Physico-Chimica Sinica,
;2012, 28(08): 1929-1935.
doi:
10.3866/PKU.WHXB201205231
-
A Mg-Al layered double hydroxide (LDH) was prepared from Mg(NO3)2·6H2O and Al((NO3)3· 9H2O by a constant-pH co-precipitation method at room temperature. PdCl24- was successfully introduced into the gallery space of the Mg-Al-LDH via an ion exchange process, and then reduced by hydrazine to produce LDH-supported palladium (LDH-Pd0) nanomaterials. The sample was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS). It was found that palladium nanoparticles were well dispersed on the LDH surface. The LDH-Pd0 nanomaterial was immobilized on a glassy carbon electrode (GCE) to oxidize hydrazine in a phosphate buffer solution (PBS, pH 7.0) using cyclic voltammetry (CV). The modified electrode exhibited excellent electrocatalytic activity and thus could be used to determine the concentration of hydrazine. This was verified by examining the amperometric response at a working potential of -0.1 V, where it was found that the anodic peak current of the modified electrodes was linear with hydrazine concentration in the range of 1.0×10-5-2.0×10-4 mol·L-1. The detection limit was 9.5×10-7 mol·L-1 at a signal-to-noise ratio of 3. The electrochemically effective surface areas were determined by chrono-coulometry (CC) to be 0.02089, 0.02762, and 0.02496 cm2 for GCE, LDH-Pd0/GCE, and LDH/GCE, respectively. The irreversible oxidation of hydrazine on the modified electrode is diffusion controlled with the participation of four electrons and four protons.
-
-
-
[1]
(1) Umar, A.; Rahman, M. M.; Kim, S. H.; Hahn, Y. B. Chem. Commun. 2008, No. 2, 166.
-
[2]
(2) Garrod, S.; Bollard, M. E.; Nicholls, A.W.; Connor, S. C.;Connelly, J.; Nicholson, J. K.; Holmes, E. Chem. Res. Toxicol.2005, 18 (2), 115. doi: 10.1021/tx0498915
-
[3]
(3) George, M.; Nagaraja, K. S.; Balasubramanian, N. Anal. Lett.2007, 40 (13), 2597. doi: 10.1080/00032710701585552
-
[4]
(4) Chen, X. T.; Xiang, Y.; Li, Z. F.; Tong, A. J. Anal. Chim. Acta2008, 625 (1), 41. doi: 10.1016/j.aca.2008.07.016
-
[5]
(5) Ensafi, A. A.; Rezaei, B. Talanta 1998, 47 (3), 645. doi: 10.1016/S0039-9140(98)00113-1
-
[6]
(6) Sun, M. J.; Bai, L.; Liu, D. Q. J. Pharm. Biomed. Anal. 2009, 49 (2), 529. doi: 10.1016/j.jpba.2008.11.009
-
[7]
(7) Safavi, A.; Karimi, M. A. Talanta 2002, 58 (4), 785 doi: 10.1016/S0039-9140(02)00362-4
-
[8]
(8) He, Z. K.; Fuhrmann, B.; Spohn, U. Anal. Chim. Acta 2000, 409 (1-2), 83. doi: 10.1016/S0003-2670(99)00890-9
-
[9]
(9) Yamada, K.; Yasuda, K.; Tanaka, H.; Miyazaki, Y.; Kobayashi,T. J. Power Sources 2003, 122 (2), 132. doi: 10.1016/S0378-7753(03)00440-3
-
[10]
(10) Casella, I. G.; Guascito, M. R.; Salvi, A. M.; Desimoni, E. Anal. Chim. Acta 1997, 354 (1-3), 333. doi: 10.1016/S0003-2670(97)00453-4
-
[11]
(11) Umar, A.; Rahman, M. M.; Hahn,Y. B. Talanta 2009, 77 (4),1376. doi: 10.1016/j.talanta.2008.09.020
-
[12]
(12) Salimia, A.; Miranzad, L.; Hallaj, R. Talanta 2008, 75 (1), 147.
-
[13]
(13) Wang, G. F.; Gu, A. X.;Wang,W.;Wei, Y.;Wu, J. J.;Wang, G.Z.; Zhang, X. J.; Fang, B. Electrochem. Commun. 2009, 11 (3),631. doi: 10.1016/j.elecom.2008.12.061
-
[14]
(14) Ivanov, S.; Lange, U.; Tsakova, V.; Mirsky, V. M. Sens. Actuators B 2010, 150 (1), 271. doi: 10.1016/j.snb.2010.07.004
-
[15]
(15) You, J. M.; Jeong, Y. N.; Ahmed, M. S.; Kim, S. K.; Choi, H. C.;Jeon, S. Biosens. Bioelectron. 2011, 26 (5), 2287. doi: 10.1016/j.bios.2010.09.053
-
[16]
(16) Zhang, H. J.; Huang, J. S.; Hou, H. P.; You, T. Y. Electroanalysis2009, 21 (16), 1869. doi: 10.1002/elan.200904630
-
[17]
(17) Ji, X.; Banks, C. E.; Holloway, A. F.; Jurkschat, K.; Thoro od,C. A.;Wild- ose, G. G.; Compton, R. G. Electroanalysis2006, 18 (24), 2481. doi: 10.1002/elan.200603681
-
[18]
(18) Baron, R.; Sljukic, B.; Salter, C.; Crossley, A.; Compton, R. G.Electroanalysis 2007, 19 (10), 1062. doi: 10.1002/elan.200703822
-
[19]
(19) Li, F.; Zhang, B.; Dong, S.;Wang, E. Electrochim. Acta 1997,42 (16), 2563. doi: 10.1016/S0013-4686(96)00450-1
-
[20]
(20) Guo, D. J.; Li, H. L. Electrochem. Commun. 2004, 6 (10), 999.doi: 10.1016/j.elecom.2004.07.014
-
[21]
(21) Guo, D. J.; Li, H. L. J. Colloid Interface Sci. 2005, 286 (1), 274.doi: 10.1016/j.jcis.2004.12.042
-
[22]
(22) Dong, B.; He, B. L.; Huang, J.; Gao, G. Y.; Yang, Z.; Li, H. L.J. Power Sources 2008, 175 (1), 266. doi: 10.1016/j.jpowsour.2007.08.090
-
[23]
(23) Shen, Y.; Xu, Q.; Gao, H.; Zhu, N. N. Electrochem. Commun.2009, 11 (6), 1329. doi: 10.1016/j.elecom.2009.05.005
-
[24]
(24) Shao, C. Y.; Lu, N.; Deng, Z. X. J. Electroanal. Chem. 2009,629 (1-2), 15. doi: 10.1016/j.jelechem.2009.01.006
-
[25]
(25) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.;Sreedhar, B. J. Am. Chem. Soc. 2002, 124 (47), 14127. doi: 10.1021/ja026975w
-
[26]
(26) Xu, M. K.; Li, L. F.; Xu, J.;Wang, D. Q. J. Dispersion Sci. Technol. 2004, 32 (7), 1.
-
[27]
(27) u, G. J.; Ma, P. H.; Chu, M. X. Acta Phys. -Chim. Sin. 2004,20, 1357. [苟国敬, 马培华, 褚敏雄. 物理化学学报, 2004,20, 1357.] doi: 10.3866/PKU.WHXB20041114
-
[28]
(28) Ren, Q. L.; Zhang, Z. F.; Luo, Q. Acta Phys. -Chim. Sin. 2004,20, 318. [任庆利, 张赞锋, 罗强. 物理化学学报, 2004, 20,318.] doi: 10.3866/PKU.WHXB20040321
-
[29]
(29) Luckza, T. Electrochim. Acta 2008, 53 (19), 5725. doi: 10.1016/j.electacta.2008.03.052
-
[30]
(30) Laviron, E. J. Electroanal. Chem. 1974, 52 (3), 355. doi: 10.1016/S0022-0728(74)80448-1
-
[31]
(31) Kim, S. K.; Jeong, Y. N. Sens. Actuators B 2011, 153 (1), 246.doi: 10.1016/j.snb.2010.10.039
-
[32]
(32) Adams, R. N. Electrochemistry at Solid Electrodes; MarcelDekker: New York, 1969; pp 220-222.
-
[33]
(33) Anson, F. Anal. Chem. 1964, 36 (4), 932. doi: 10.1021/ac60210a068
-
[1]
-
-
-
[1]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[2]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[3]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[4]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[5]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[6]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[7]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[8]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[9]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[10]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[11]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[12]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[13]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[14]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[15]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[16]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[17]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[18]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[19]
Jianqiao ZHANG , Yang LIU , Yan HE , Yaling ZHOU , Fan YANG , Shihui CHENG , Bin XIA , Zhong WANG , Shijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444
-
[20]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[1]
Metrics
- PDF Downloads(879)
- Abstract views(2860)
- HTML views(45)