Citation:
LIU Jian-Guo, DING Ming-Yue, WANG Tie-Jun, MA Long-Long. Structure and Performance of Cu-Fe Bimodal Support for Higher Alcohol Syntheses[J]. Acta Physico-Chimica Sinica,
;2012, 28(08): 1964-1970.
doi:
10.3866/PKU.WHXB201205213
-
Copper-iron modified bimodal support (M) with different mass fractions of Cu and Fe elements were prepared by an ultrasonic impregnation method. The catalytic performance for higher alcohol syntheses (HAS) was investigated in a fixed-bed flow reactor. Several techniques, including N2 physical adsorption, temperature-programmed reduction/desorption of hydrogen, (H2-TPR/TPD) and X-ray diffraction (XRD) were used to characterize the catalysts. The results indicated that the bimodal pore support was formed by the addition of small-pore silica sol into the macroporous silica gel. Increased amounts of small pore silica sol caused a decrease in pore size in the bimodal carrier. An increase in the Fe/Cu molar ratio facilitated the dispersion of CuO, promoted the reduction of CuO and Fe2O3 on the surface layers, and enhanced the interaction between the copper and iron species as well as the bimodal support inside the large pores. The copper was well-dispersed on the catalyst and the amount of iron carbides formed was high in catalysts with a high Fe/Cu molar ratio. Increasing the Fe/Cu mass ratio promoted the catalytic activity and thus facilitated the synthesis of higher alcohols. When the Fe/Cu molar ratio was increased to 30/20, the CO conversion and the yield of higher alcohols increased to 46% and 0.21 g·mL-1·h-1, respectively. At the same time, the mass ratio of C2+OH/CH3OH reached 1.96.
-
-
-
[1]
(1) Herman, R. G. Catal. Today 2000, 55, 233. doi: 10.1016/S0920-5861(99)00246-1
-
[2]
(2) He, D. P.; Ding, Y. J.; Luo, H.Y.; Li, C. J. Mol.Catal. A:Chem.2004, 208, 267. doi: 10.1016/S1381-1169(03)00542-9
-
[3]
(3) Tronconi, E.; Lietti, L.; Forzatti, P.; Pasquon, I. Appl. Catal.1989, 47, 317. doi: 10.1016/S0166-9834(00)83237-6
-
[4]
(4) Mahdavi, V.; Peyrovi, M. H. Catal. Commun. 2006, 7, 542. doi: 10.1016/j.catcom.2006.01.012
-
[5]
(5) Xiao, H. C.; Li, D. B.; Li,W. H.; Sun, Y. H. Fuel Process. Technol. 2010, 91, 383. doi: 10.1016/j.fuproc.2009.07.004
-
[6]
(6) Courty, P.; Durand, D.; Freund, E.; Sugier, A. J. Mol. Catal.1982, 17, 241. doi: 10.1016/0304-5102(82)85035-9
-
[7]
(7) Subramanian, N. D.; Balaji, G.; Kumar, C. S. S. R.; Spivey,J. J. Catal. Today 2009, 147, 100. doi: 10.1016/j.cattod.2009.02.027
-
[8]
(8) Boz, I.; Sahibzada, M.; Metcalfe, I. S. Ind. Eng. Chem. Res.1994, 33, 2021. doi: 10.1021/ie00033a001
-
[9]
(9) Pour, A. N.; Zamani, Y.; Tavasoli, A.; Shahri, S. M. K.; Taheri,S. A. Fuel 2008, 87, 2004. doi: 10.1016/j.fuel.2007.10.014
-
[10]
(10) Bukur, D. B.; Lang, X. S. Ind. Eng. Chem. Res. 1999, 38, 3270.doi: 10.1021/ie990028n
-
[11]
(11) Sibillia, J. A.; Dominguez, J. M.; Herman, R. G.; Klier, K.Prepr. Div. Fuel Chem. ACS 1984, 29, 261.
-
[12]
(12) Xu, R.; Yang, C.;Wei,W.; Li,W. H.; Sun, Y. H.; Hu, T. D.J. Mol.Catal. A: Chem. 2004, 221, 51. doi: 10.1016/j.molcata.2004.07.003
-
[13]
(13) Xu, R.; Ma, Z. Y.; Yang, C.;Wei,W.; Sun, Y. H. React. Kinet. Catal. Lett. 2004, 81, 91. doi: 10.1023/B:REAC.0000016521.91502.5f
-
[14]
(14) Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Chem. Commun. 2002,1216.
-
[15]
(15) Zhang, Y.; Koike, M.; Yang, R. Q.; Hinchiranan, S.; Vitidsant,T.; Tsubaki, N. Appl. Catal. A 2005, 292, 252. doi: 10.1016/j.apcata.2005.06.004
-
[16]
(16) Xu, B. L.; Fan, Y. N.; Zhang, Y.; Tsubaki, N. AIChE Journal2005, 51, 2068. doi: 10.1002/aic.10469
-
[17]
(17) Inui, T.; Funabiki, M.; Suehiro, M.; Sezume, T. J. Chem. Soc. FaradayTrans. 1979, 75, 787.
-
[18]
(18) Yang, Y.; Tao, Z. C.; Zhang, C. H.;Wang, H.; Tian, L.; Xu, Y.Y.; Xiang, H.W.; Li, Y.W. J. Fuel Chem. Technol. 2004, 32,717. [杨勇, 陶智超, 张成华, 王洪, 田磊, 徐元源,相宏伟, 李永旺. 燃料化学学报, 2004, 32, 717.]
-
[19]
(19) Zhang, Y.; Zhang, C. M.; Lu, F.; Li, Y.W.; Sun, Y. H.; Zhong, B.J. Fuel Chem. Technol. 2000, 28, 244. [张业, 张池明, 陆凡, 李永旺, 孙予罕, 钟炳. 燃料化学学报, 2000, 28, 244.]
-
[20]
(20) Burch, R.; Chappell, R. J. Appl. Catal. 1988, 45, 131. doi: 10.1016/S0166-9834(00)82398-2
-
[21]
(21) Burch, R.; lunski, S. E.; Spencer, M. S. J. Chem. Soc. Faraday Trans. 1990, 86, 2683. doi: 10.1039/ft9908602683
-
[22]
(22) Ding, M.Y.; Yang, Y.; Xu, J.; Tao, Z. C.;Wang, H. L.;Wang, H.;Xiang, H.W.; Li, Y.W. Appl. Catal. A 2008, 345, 176. doi: 10.1016/j.apcata.2008.04.036
-
[1]
-
-
-
[1]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[2]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[3]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[4]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[5]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[6]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[7]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[8]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[9]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[10]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[11]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[12]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
-
[13]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[14]
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066
-
[15]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[16]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[17]
Mengyang LI , Hao XU , Zhonghao NIU , Chunhua GONG , Weihui ZHONG , Jingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080
-
[18]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[19]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[20]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[1]
Metrics
- PDF Downloads(849)
- Abstract views(2491)
- HTML views(52)