Citation:
BI Dong-Qin, XU Yi-Ming. Influence of Iron Oxide Doping on the Photocatalytic Degradation of Organic Dye X3B over Tungsten Oxide[J]. Acta Physico-Chimica Sinica,
;2012, 28(07): 1777-1782.
doi:
10.3866/PKU.WHXB201205113
-
Development of a highly active visible-light-driven photocatalyst is a challenge for chemical use of solar energy. In this work, WO3 was simply mixed with Fe2O3, and used thereafter for the photocatalytic degradation of organic dye X3B in the presence of H2O2. It was observed that the composite activity was greatly influenced by the catalyst sintering temperature, and by Fe2O3 content in the mixed oxide. The optimum sintering temperature and Fe2O3 loading were 400 ° C and 1.0% (w), respectively. Through a spin trapping electron paramagetic spectroscopy, it was found that the composite produced a significantly larger amount of hydroxyl radicals, in relative to Fe2O3 and WO3. It is proposed that the observed synergistic effect between Fe2O3 and WO3 is due to the charge transfer between the two oxides, improving the separation of the photogenerated charge carriers, and thus accelerating the photocatalytic degradation of X3B.
-
Keywords:
-
Photocatalysis
, - Tungsten oxide,
- Iron oxide,
- Synergism,
- Organic dye,
- Degradation
-
-
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
-
[2]
(2) Kabra, K.; Chaudhary, R.; Sawhney, R. L. Ind. Eng. Chem. Res.2004, 43, 7683. doi: 10.1021/ie0498551
-
[3]
(3) Koka, M.; Sahin, M. Int. J. Hydrog. Energy 2002, 27, 363. doi: 10.1016/S0360-3199(01)00133-1
-
[4]
(4) Serrano, B.; Lasa, H. Ind. Eng. Chem. Res.1997, 36, 4705. doi: 10.1021/ie970104r
-
[5]
(5) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K.Renewable and Sustainable Energy Rev. 2007, 11, 401. doi: 10.1016/j.rser.2005.01.009
-
[6]
(6) Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Chem. Rev. 1995, 95,735. doi: 10.1021/cr00035a013
-
[7]
(7) Murakami, Y.; Endo, K.; Ohta, I.; Nosaka, A. Y.; Nosaka, Y.J. Phys. Chem. C 2007, 111, 11339. doi: 10.1021/jp0722049
-
[8]
(8) Kumar, S. G.; Devi, L. G. J. Phys. Chem. A 2011, 115, 13211.doi: 10.1021/jp204364a
-
[9]
(9) Tachikawa, T.; Majima, T. Langmuir 2009, 25, 7791. doi: 10.1021/la900790f
-
[10]
(10) Zhao, Z. G.; Miyauchi, M. Angew. Chem. Int. Edit. 2008, 47,7051. doi: 10.1002/anie.200802207
-
[11]
(11) Santato, C.; Ulmann, M.; Augustynski, J. Adv. Mater. 2001, 13,511. doi: 10.1002/1521-4095(200104)13:7<511:AIDADMA511>3.0.CO;2-W
-
[12]
(12) Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J.J. Am. Chem. Soc. 2001, 123, 10639. doi: 10.1021/ja011315x
-
[13]
(13) Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128,15714. doi: 10.1021/ja064380l
-
[14]
(14) Abe, R.; Takami, H.; Murakami, N.; Ohtani, B. J. Am. Chem. Soc. 2008, 130, 7780. doi: 10.1021/ja800835q
-
[15]
(15) Kim, J.; Lee, C.W.; Choi,W. Environ. Sci. Technol. 2010, 44,6849. doi: 10.1021/es101981r
-
[16]
(16) Darwent, J. R.; Mills, A. J. Chem. Soc. Faraday Trans. 1982,78, 359. doi: 10.1039/f29827800359
-
[17]
(17) Sclafani, A.; Palmisano, L.; Marci, G.; Venezia, A. M. Sol. Energy Mater. Sol. Cells 1998, 51, 203. doi: 10.1016/S0927-0248(97)00215-8
-
[18]
(18) Arai, T.; Horiguchi, M.; Yanagida, M.; Gunji, T.; Sugihara, H.;Sayama, K. Chem. Commun. 2008, 5565. doi: 10.1039/b811657a
-
[19]
(19) Sun, S.;Wang,W.; Zeng, S.; Shang, M.; Zhang L. J. Harzard. Mater. 2010, 178, 427. doi: 10.1016/j.jhazmat.2010.01.098
-
[20]
(20) He, T.; Yao, J. N. J. Mater. Chem. 2007, 17, 4547. doi: 10.1039/b709380b
-
[21]
(21) Du,W.; Xu, Y.;Wang, Y. Langmuir 2008, 24, 175. doi: 10.1021/la7021165
-
[22]
(22) Wang, Y.; Du,W.; Xu, Y. Langmuir 2009, 25, 2895. doi: 10.1021/la803714m
-
[23]
(23) Bi, D.; Xu, Y. Langmuir 2011, 27, 9359. doi: 10.1021/la2012793
-
[24]
(24) Pope, M. T.; Varga, G. M. Inorg. Chem. 1966, 5, 1249. doi: 10.1021/ic50041a038
-
[25]
(25) Yang, L.; Xiao, Y.; Liu, S.; Li, Y.; Cai, Q.; Luo, S.; Zeng, G.Appl. Catal. B: Environ. 2010, 94, 142. doi: 10.1016/j.apcatb.2009.11.002
-
[26]
(26) Adán, C.; Bahamonde, A.; Fernández-García, M.; Martínez-Arias, A. Appl. Catal. B 2007, 72, 11. doi: 10.1016/j.apcatb.2006.09.018
-
[27]
(27) Sherman, D. M. Geochim. Cosmochim. Acta 2005, 69, 3249.doi: 10.1016/j.gca.2005.01.023
-
[28]
(28) Thompson, T. L.; Yates, J. T. Chem. Rev. 2006, 106, 4428. doi: 10.1021/cr050172k
-
[1]
-
-
-
[1]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[2]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[3]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[7]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[8]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[9]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[10]
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[13]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[14]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[15]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[16]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[17]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[18]
Meihong Luo , Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055
-
[19]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(916)
- Abstract views(2557)
- HTML views(58)