Citation: XU Zhao-Ying, ZHAO Li-Ling, CAO Zan-Xia, WANG Ji-Hua. Effects of the Residue Mutations on the Segment of P53-DNA Binding Region Based on Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, ;2012, 28(07): 1665-1675. doi: 10.3866/PKU.WHXB201204182 shu

Effects of the Residue Mutations on the Segment of P53-DNA Binding Region Based on Molecular Dynamics Simulation

  • Received Date: 10 January 2012
    Available Online: 18 April 2012

    Fund Project: 国家自然科学基金(30970561, 31000324) (30970561, 31000324)山东省自然科学基金(2009ZRA14027, 2009ZRA14028)资助项目 (2009ZRA14027, 2009ZRA14028)

  • The structural characteristics of the peptide segment of the P53-DNA binding domain (from residue 230 to 258) were studied using molecular dynamics simulations with different mutations, including R249S, R248W, and G245S. Four independent simulations, including the wild-type segment wtP53, onepoint mutation segment P53-R249S, two-point mutation segment P53-R249S/R248W, and three-point mutation segment P53-R249S/R248W/G245S, were performed using the GROMACS software package and GROMOS 43A1 force field. Each simulation was run for 500 ns. The results indicated that mutation R249S affected the formation of the secondary structure for some residues, but had little impact on the mode of the ternary structure and made the segment more stable than the wild-type segment. In contrast, the R249S/R248W mutation strengthened the effect of R249S on the segment and induced a significant change in the ternary structure, with the structure of the two-point mutation segment R249S/R248W existing as a double-turn motif and becoming more stable. Moreover, the G245S mutation had the opposite effect on the segment, decreasing or eliminating entirely the effects caused by the R249S/R248W mutation on the segment. This study provided important understanding of the molecular mechanism of tumorigenesis and the design of a new drug.

  • 加载中
    1. [1]

      (1) Attardi, L. D.; Donehower, L. A. Mutat. Res. 2005, 576 (1-2),4. doi: 10.1016/j.mrfmmm.2004.08.022

    2. [2]

      (2) Fazeli, A.; Steen, R. G.; Dickinson, S. L.; Bautista, D.; Dietrich,W. F.; Bronson, R. T.; Bresalier, R. S.; Lander, E. S.; Costa, J.;Weinberg, R. A. Proc. Natl. Acad. Sci. U. S. A. 1997, 94 (19),10199. doi: 10.1073/pnas.94.19.10199

    3. [3]

      (3) Wang,W.; El-Deiry,W. S. Curr. Opin. Oncol. 2008, 20 (1), 90.doi: 10.1097/CCO.0b013e3282f31d6f

    4. [4]

      (4) Barlev, N. A.; Sayan, B. S.; Candi, E.; Okorokov, A. L. Cell Death Differ. 2010, 17 (2), 373. doi: 10.1038/cdd.2009.73

    5. [5]

      (5) Botcheva, K.; McCorkle, S. R.; McCombie,W. R.; Dunn, J. J.;Anderson, C.W. Cell Cycle 2011, 10 (24), 4237. doi: 10.4161/cc.10.24.18383

    6. [6]

      (6) Romer, L.; Klein, C.; Dehner, A.; Kessler, H.; Buchner, J.Angew. Chem. Int. Edit. Engl. 2006, 45 (39), 6440. doi: 10.1002/anie.200600611

    7. [7]

      (7) Cho, Y.; rina, S.; Jeffrey, P. D.; Pavletich, N. P. Science 1994,265 (5170), 346. doi: 10.1126/science.8023157

    8. [8]

      (8) Joerger, A. C.; Fersht, A. R. Annu. Rev. Biochem. 2008, 77,557. doi: 10.1146/annurev.biochem.77.060806.091238

    9. [9]

      (9) Rustandi, R. R.; Baldisseri, D. M.;Weber, D. J. Nat. Struct. Biol. 2000, 7 (7), 570. doi: 10.1038/76797

    10. [10]

      (10) Tidow, H.; Melero, R.; Mylonas, E.; Freund, S. M.; Grossmann,J. G.; Carazo, J. M.; Svergun, D. I.; Valle, M.; Fersht, A. R.Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (30), 12324. doi: 10.1073/pnas.0705069104

    11. [11]

      (11) Dawson, R.; Muller, L.; Dehner, A.; Klein, C.; Kessler, H.;Buchner, J. J. Mol. Biol. 2003, 332 (5), 1131. doi: 10.1016/j.jmb.2003.08.008

    12. [12]

      (12) Terakawa, T.; Takada, S. Biophys. J. 2011, 101 (6), 1450. doi: 10.1016/j.bpj.2011.08.003

    13. [13]

      (13) Pavletich, N. P.; Chambers, K. A.; Pabo, C. O. Genes Dev. 1993,7 (12B), 2556. doi: 10.1101/gad.7.12b.2556

    14. [14]

      (14) Weinberg, R. L.; Veprintsev, D. B.; Fersht, A. R. J. Mol. Biol.2004, 341 (5), 1145. doi: 10.1016/j.jmb.2004.06.071

    15. [15]

      (15) Bullock, A. N.; Fersht, A. R. Nat. Rev. Cancer 2001, 1 (1),68. doi: 10.1038/35094077

    16. [16]

      (16) Petitjean, A.; Achatz, M. I.; Borresen-Dale, A. L.; Hainaut, P.;Olivier, M. Oncogene 2007, 26 (15), 2157. doi: 10.1038/sj.onc.1210302

    17. [17]

      (17) Soussi, T. Adv. Cancer Res. 2011, 110, 107. doi: 10.1016/B978-0-12-386469-7.00005-0

    18. [18]

      (18) Ang, H. C.; Joerger, A. C.; Mayer, S.; Fersht, A. R. J. Biol. Chem. 2006, 281 (31), 21934. doi: 10.1074/jbc.M604209200

    19. [19]

      (19) Tidow, H.; Veprintsev, D. B.; Freund, S. M.; Fersht, A. R.J. Biol. Chem. 2006, 281 (43), 32526. doi: 10.1074/jbc.M604725200

    20. [20]

      (20) Szymanska, K.; Chen, J. G.; Cui, Y.; ng, Y. Y.; Turner, P. C.;Villar, S.;Wild, C. P.; Parkin, D. M.; Hainaut, P. Cancer Epidemiol. Biomarkers Prev. 2009, 18 (5), 1638. doi: 10.1158/1055-9965.EPI-08-1102

    21. [21]

      (21) uas, D.; Shi, H.; Hainaut, P. Cancer Lett. 2009, 286 (1), 29.doi: 10.1016/j.canlet.2009.02.057

    22. [22]

      (22) Friedler, A.; DeDecker, B. S.; Freund, S. M.; Blair, C.; Rudiger,S.; Fersht, A. R. J. Mol. Biol. 2004, 336 (1), 187. doi: 10.1016/j.jmb.2003.12.005

    23. [23]

      (23) Suad, O.; Rozenberg, H.; Brosh, R.; Diskin-Posner, Y.; Kessler,N.; Shimon, L. J.; Frolow, F.; Liran, A.; Rotter, V.; Shakked, Z.J. Mol. Biol. 2009, 385 (1), 249.

    24. [24]

      (24) Rauf, S. M.; Ismael, M.; Sahu, K. K.; Suzuki, A.; Koyama, M.;Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takaba, H.; Del Carpio,C. A.; Kubo, M.; Miyamoto, A. Comput. Biol. Med. 2010, 40 (5), 498. doi: 10.1016/j.compbiomed.2010.03.004

    25. [25]

      (25) Zhao, J.; Guo, Z. K. Journal of Northwest Agriculture and Forestry University (Nat. Sci. Ed.) 2008, 36 (10), 186.[赵晶, 郭泽坤. 西北农林科技大学学报(自然科学版), 2008,36 (10), 186.]

    26. [26]

      (26) Wang, R.; ng, Z. H.; Jiang, L. X.; Sun, D. J.; Jiao, A. H.;Chen, J.; Zhang, L. M. China Oncology 2010, 21 (3), 177.

    27. [27]

      (27) Barakat, K.; Issack, B. B.; Stepanova, M.; Tuszynski, J. PLos One 2011, 6 (11), e27651.

    28. [28]

      (28) Cao, Z.; Liu, L.;Wu, P.;Wang, J. Acta Biochim. Biophys. Sin.2011, 43 (3), 172.

    29. [29]

      (29) Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror,R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J.K.; Shan, Y.;Wriggers,W. Science 2010, 330 (6), 341. doi: 10.1126/science.1187409

    30. [30]

      (30) Guex, N.; Peitsch, M. C. Electrophoresis 1997, 18 (15), 2714.doi: 10.1002/elps.1150181505

    31. [31]

      (31) Guex, N.; Peitsch, M. C.; Schwede, T. Electrophoresis 2009, 30 (Suppl 1), S162.

    32. [32]

      (32) Kutzner, C.; Czub, J.; Grubmuller, H. J. Chem. Theory Comput.2011, 7 (5), 1381. doi: 10.1021/ct100666v

    33. [33]

      (33) van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,A. E.; Berendsen, H. J. J. Comput. Chem. 2005, 26 (16),1701. doi: 10.1002/jcc.20291

    34. [34]

      (34) Lin, Z.; van Gunsteren,W. F.; Liu, H. J. Comput. Chem. 2011,32 (10), 2290. doi: 10.1002/jcc.21818

    35. [35]

      (35) Stocker, U.; van Gunsteren,W. F. Proteins 2000, 40 (1),145. doi: 10.1002/(SICI)1097-0134(20000701)40:1<145:AIDPROT160>3.0.CO;2-Y

    36. [36]

      (36) Berlinski, E.;Wojcikowski, C.; Horoszek-Maziarz, S.; Krupa-Wojciechowska, B. Endokrynol Pol. 1981, 32 (2), 117.

    37. [37]

      (37) Chatterjee, S.; Debenedetti, P. G.; Stillinger, F. H.; Lynden-Bell,R. M. J. Chem. Phys. 2008, 128 (12), 124511. doi: 10.1063/1.2841127

    38. [38]

      (38) Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren,W. F. V.J. Chem. Phys. 1984, 81 (8), 3684. doi: 10.1063/1.448118

    39. [39]

      (39) Frishman, D.; Ar s, P. Proteins 1995, 23 (4), 566. doi: 10.1002/prot.340230412

    40. [40]

      (40) Hu, H.; Elstner, M.; Hermans, J. Proteins 2003, 50 (3), 1131.

    41. [41]

      (41) Nikolova, P. V.;Wong, K. B.; DeDecker, B.; Henckel, J.; Fersht,A. R. EMBO J. 2000, 19 (3), 370. doi: 10.1093/emboj/19.3.370

    42. [42]

      (42) Wong, K. B.; DeDecker, B. S.; Freund, S. M.; Proctor, M. R.;Bycroft, M.; Fersht, A. R. Proc. Natl. Acad. Sci. U. S. A. 1999,96 (15), 8438. doi: 10.1073/pnas.96.15.8438

    43. [43]

      (43) Joerger, A. C.; Ang, H. C.; Veprintsev, D. B.; Blair, C. M.;Fersht, A. R. J. Biol. Chem. 2005, 280 (16), 16030. doi: 10.1074/jbc.M500179200

    44. [44]

      (44) Francis, C. J.; Lindorff-Larsen, K.; Best, R. B.; Vendruscolo, M.Proteins 2006, 65 (1), 145. doi: 10.1002/prot.21077

    45. [45]

      (45) Cao, Z.; Liu, L.;Wang, J. J. Biomol. Struct. Dyn. 2010, 28 (3),343.

    46. [46]

      (46) Qiao, X.; Chen, Y.W. Int. J. Biomed. Imaging 2011, 2011,601672.


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    20. [20]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(889)
  • Abstract views(2201)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return