Citation:
FENG Li-Xia, JIN Ling-Xia, WANG Wei-Na, WANG Wen-Liang. Mechanism and Kinetics of the Hydrogen Abstraction Reaction of C2H3 with CH3F[J]. Acta Physico-Chimica Sinica,
;2012, 28(07): 1623-1629.
doi:
10.3866/PKU.WHXB201204112
-
A dual-level direct dynamics method was employed to study the hydrogen abstraction reaction of C2H3 with CH3F. The calculated potential barriers (ΔE≠) of reaction channels R1, R2, and R3 are 43.2, 43.9, and 44.1 kJ·mol-1, respectively, and the reaction energy is -38.2 kJ·mol-1 at the QCISD(T)/6-311++ G(d, p)//B3LYP/6-311G(d, p) level. In addition, the rate constants of the reaction were evaluated by means of the conventional transition-state theory (TST) and canonical variational transition-state theory (CVT) with or without small curvature tunneling corrections (SCT) over a wide temperature range of 200-3000 K. The results indicate that the rate constants of the three hydrogen abstraction reaction channels exhibit a positive temperature dependence, in which the variational effect is negligible for all the channels, whereas the tunneling effect is considerable at lower temperatures. Moreover, the reaction R1 is the dominant channel. Reaction R2 competes kinetically with R1 as the temperature increases, whereas the contribution from R3 is small.
-
Keywords:
-
C2H3
, - CH3F,
- Hydrogen abstraction reaction,
- QCISD(T)//B3LYP,
- Rate constant
-
-
-
-
[1]
(1) Farman, J. D.; Gardiner, B. G.; Shanklin, J. D. Nature 1985,315, 207. doi: 10.1038/315207a0
-
[2]
(2) Solomon, S. Nature 1990, 347, 347.
-
[3]
(3) Zhou, X.; Zhou, B. Chin. J. Chem. 2011, 29, 1335. doi: 10.1002/cjoc.201180251
-
[4]
(4) Wang, L.; Zhao, Y.; Zhang, J.; Dai, Y.; Zhang, J. Theor. Chem. Acc. 2011, 128, 183. doi: 10.1007/s00214-010-0813-8
-
[5]
(5) Han,W.; Kennedy, E. M.; Mackie, J. C.; Dlu rski, B. Z. Ind. Eng. Chem . Res. 2010, 49, 8406. doi: 10.1021/ie100349x
-
[6]
(6) Sun, H.; He, H.; Pan, Y.; Pan, X.; Li, Z.;Wang, R. Chemical Physics Letters 2008, 450, 186. doi: 10.1016/j.cplett.2007.11.003
-
[7]
(7) Ali, M. A.; Rajakumar, B. J. Mol. Struct. -Theochem 2010, 949,73. doi: 10.1016/j.theochem.2010.03.006
-
[8]
(8) Gao, H.;Wang, Y.;Wan, S.; Liu, J.; Sun, C. J. Mol. Struct. -Theochem 2009, 913, 107. doi: 10.1016/j.theochem.2009.07.024
-
[9]
(9) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2008, 869, 6. doi: 10.1016/j.theochem.2008.08.012
-
[10]
(10) nzález-Lafont, À.; Lluch, J. M.; Varela-álvarez, A.; Sordo, J.A. J. Phys. Chem. B 2008, 112, 328. doi: 10.1021/jp075298v
-
[11]
(11) Taghikhani, M.; Parsafar, G. A. J. Phys. Chem. A 2007, 111,8095. doi: 10.1021/jp072403s
-
[12]
(12) Yang, J.; Zhang, S.W.; Li, Q. S. Chemical Journal of Chinese Universities 2007, 28, 1975. [杨静, 张绍文, 李前树. 高等学校化学学报, 2007, 28, 1975.] doi: 10.3321/j.issn:0251-0790.2007.10.040
-
[13]
(13) Zhang, L.; Li, S. J. Mol. Struct. -Theochem 2009, 901, 38.10.1016/j.theochem.2008.12.044
-
[14]
(14) Song, C.; Tian, Z.; Li, Q.; He, T. J. Mol. Struct. -Theochem2009, 910, 126. doi: 10.1016/j.theochem.2009.06.027
-
[15]
(15) Han,W.; Kennedy, E. M.; Kundu, S. K.; Mackie J. C.; Adesina,A. A.; Dlu rski, B. Z. Journal of Fluorine Chemistry 2010,131 (7), 751.
-
[16]
(16) Han,W.; Kennedy, E. M.; Mackie J. C.; Dlu rski, B. Z.Journal of Hazardous Materials 2010, 180, 181. doi: 10.1016/j.jhazmat.2010.04.011
-
[17]
(17) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.;Just, T.; Kerr, J. A.; Pilling, M. J.; Troe, J.;Walker, R.W.;Warnatz, J. J. Phys. Chem. Ref. Data 1992, 21, 411. doi: 10.1063/1.555908
-
[18]
(18) Monks, P. S.; Nesbitt, F. L.; Payne,W. A.; Scanlon, M.; Stief, L.J.; Shallcross, D. E. J. Phys. Chem. 1995, 99 (47), 17151.19) Payne,W. A.; Monks, P. S.; Nesbitt, F. L.; Stief, L. J. J. Chem. Phys. 1996, 104, 9808. doi: 10.1063/1.471740
-
[19]
(20) Feng, C. J.; Zhang,W. C.; Du, B. N.; Mu, L. L. J. Mol. Struct. -Theochem 2007, 847, 79. doi: 10.1016/j.theochem.2007.09.001
-
[20]
(21) Fahr, A.; Laufer, A. H.; Tardy, D. C. J. Phys. Chem. A 1999,103, 8433.
-
[21]
(22) Wang, X. L.; Yu, F.; Xie, D.; Liu, S. L.; Zhou, X. G. Acta Chimica Sinica 2008, 66 (22), 2499. [王新磊, 于锋, 谢丹, 刘世林, 周晓国. 化学学报, 2008, 66 (22), 2499.]
-
[22]
(23) Mebel, A. M.; Morokuma, K.; Lin, M. C. J. Chem. Phys. 1995,103 (9), 3440.
-
[23]
(24) Knyazev, V. D.; Bencsura, Á.; Stoliarov, S. I.; Slagle, I. R. J. Phys. Chem. 1996, 100, 11346.
-
[24]
(25) Li, Q. S.; Lu, R. H.;Wang, C. Y. J. Mol. Struct. -Theochem2004, 668, 35. doi: 10.1016/j.theochem.2003.10.014
-
[25]
(26) Mebel, A. M.; Diau, E.W. G.; Lin, M. C.; Morokuma, K. J. Am. Chem. Soc. 1996, 118 (40), 9759.
-
[26]
(27) Knyazev, V. D.; Slagle, I. R. J. Phys. Chem. 1995, 99, 2247.
-
[27]
(28) Wang, H.; Liu, J. X.;Wang, B. S.; Kong, F. A. Acta Phys.-Chim. Sin. 2000, 16 (8), 674. [王惠, 刘建勋, 王宝山, 孔繁敖.物理化学学报, 2000, 16 (8), 674.] doi: 10.3866/PKU.WHXB20000801
-
[28]
(29) Oguchi, T.; Sato, Y.; Matsui, H. Chemical Physics Letters 2009,472, 181. doi: 10.1016/j.cplett.2009.03.012
-
[29]
(30) Wang, L. C.;Wang, X.; Tian, A. M. Acta Chimica Sinica 2008,60 (3), 457. [李来才, 王欣, 田安民, 化学学报, 2008, 60 (3), 457.]
-
[30]
(31) Benson, S.W. Int. J. Chem. Kinet. 1994, 26, 997. doi: 10.1002/kin.550261005
-
[31]
(32) Boullart,W.; Nguyen, M. T.; Peeters, J. J. Phys. Chem. 1994, 98
-
[32]
(33), 8036.
-
[33]
(33) Feng,W. H.;Wang, B. S.;Wang, H.; Kong, F. A. Acta Phys. -Chim. Sin. 2000, 16 (9), 776. [冯文辉, 王宝山, 王惠, 孔繁敖. 物理化学学报, 2000, 16 (9), 776.] doi: 10.3866/PKU.WHXB20000903
-
[34]
(34) Huang, C. S.; Zhu, Z. Q.; Ran, Q.; Chen, C. X.; Chen, Y. Acta Phys. -Chim. Sin. 2003, 19 (1), 51. [黄存顺, 朱志强, 冉琴,陈从香, 陈旸. 物理化学学报, 2003, 19 (1), 51.] doi: 10.3866/PKU.WHXB20030112
-
[35]
(35) Shestov, A. A.; Popov, K. V.; Slagle, I. R.; Knyazev, V. D.Chemical Physics Letters 2005, 408, 339. doi: 10.1016/j.cplett.2005.04.057
-
[36]
(36) ldsmith, C. F.; Ismail, H.; Abel, P. R.; Green,W. H.Proceedings of the Combustion Institute 2009, 32, 139. doi: 10.1016/j.proci.2008.06.142
-
[37]
(37) Muszyńska, M.; Ratkiewicz, A.; Huynh, L. K.; Truong, T. N.J. Phys. Chem. A 2009, 113, 8327. doi: 10.1021/jp903762x
-
[38]
(38) Feng, S.; Duan,W. Z.; Liu, Q.; Liu, F. L. J. Mol. Struct. -Theochem 2009, 897, 1. doi: 10.1016/j.theochem.2008.10.019
-
[39]
(39) Burgess, D. R., Jr.; Zachariah, M. R.; Tsang,W.;Westmoreland,P. R. Prog. Energy Combust. Sci. 1996, 21, 453.
-
[40]
(40) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.
-
[41]
(41) Thiesemann, H.; Clifford, E. P.; Taatjes, C. A.; Klippenstein, S.J. J. Phys. Chem. A 2001, 105, 5393.
-
[42]
(42) Chuang, Y. Y.; Corchado, J. C.; Truhlar, D. G. J. Phys. Chem. A1999, 103, 1140.
-
[43]
(43) Chuang, Y. Y.; Corchado, J. C.; Fast, P. L.; et al. Polyrate,Version 8.2; University of Minnesota: Minneapolis, 1999.
-
[44]
(44) JANAF Thermochemical Tables, 2nd ed.; Stull, D. R., Prohet, H.Eds. National Standard Reference Data Series N0 37, NationalBureau of Standards, US vernment, Printing Office:Washington, DC, 1971.
-
[45]
(45) Duncan, J. L. Mol. Phys. 1974, 28, 1177. doi: 10.1080/00268977400102501
-
[46]
(46) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. doi: 10.1021/ja01607a027
-
[47]
(47) Fahr, A.; Laufer, A. H. J. Phys. Chem. 1988, 92 (29), 7229.
-
[48]
(48) Ira, N. L. Molecular Spectroscopy;Wiley: New York, 1975.
-
[49]
(49) Olleta, A. C.; Taccone, R. A. J. Mol. Struct. -Theochem 2000,507, 25. doi: 10.1016/S0166-1280(99)00346-2
-
[50]
(50) Liu, J. Y.; Li, Z. S.; Dai, Z.W.; Zhang, G.; Sun, C. C. Chem. Phys. 2004, 296, 43. doi: 10.1016/j.chemphys.2003.09.028
-
[51]
(51) Zhang, Q. Z.; Zhang, R. Q.; Gu, Y. S. J. Phys. Chem. A 2004,108, 1064. doi: 10.1021/jp036446u
-
[52]
(52) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994,98 (11), 2744.
-
[53]
(53) Kolesov, V. P. Russ. Chem. Rev. 1978, 47, 1145.
-
[54]
(54) Pickard, J. M.; Rodgers, A. S. Int. J. Chem. Kinet. 1983, 15,569. doi: 10.1002/kin.550150607
-
[55]
(55) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Corne11University Press: Ithaca, NY, 1960; p 260.
-
[56]
(56) Martell, J. M.; Boyd, R. J. J. Phys. Chem. 1995, 99, 13402. doi: 10.1021/j100036a014
-
[57]
(57) Garrett, B. C.; Truhlar, D. G. J. Am. Chem. Soc. 1979, 101 (16),4534.
-
[1]
-
-
-
[1]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[2]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[3]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[4]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[5]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[6]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[7]
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
-
[8]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032
-
[9]
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
-
[10]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[11]
Zhenguo Zhang , Lanyang Li , Xinlong Zong , Yongheng Lv , Shuanglei Liu , Liang Ji , Xuefei Zhao , Zhenhua Jia , Teck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[14]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[15]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[16]
Jun Jiang , Hui Dai , Tao Tu . Two vicinal C(sp3)-F bonds functionalization of perfluoroalkyl halides (PFAHs). Chinese Chemical Letters, 2025, 36(7): 111054-. doi: 10.1016/j.cclet.2025.111054
-
[17]
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
-
[18]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[19]
Qin Wang , Han Luo , Luli Wang , Ling Huang , Liling Cao , Xuehua Dong , Guohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173
-
[20]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[1]
Metrics
- PDF Downloads(748)
- Abstract views(1914)
- HTML views(10)