Citation: ZHOU Ju-Fa, ZHAO Ming, PENG Na, YANG Zheng-Zheng, NG Mao-Chu, CHEN Yao-Qiang. Performance Effect of Pt/MOx-SiO2 (M=Ce, Zr, Al) Catalysts for CO and C3H8 Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1448-1454. doi: 10.3866/PKU.WHXB201204011 shu

Performance Effect of Pt/MOx-SiO2 (M=Ce, Zr, Al) Catalysts for CO and C3H8 Oxidation

  • Received Date: 12 January 2012
    Available Online: 1 April 2012

    Fund Project: 国家自然科学基金(21173153) (21173153)四川省科技厅科技支撑项目(2011GZ0035)资助 (2011GZ0035)

  • MOx-SiO2 (M=Ce, Zr, Al) mixed oxides with a MOx:SiO2 mass ratio of 1:1 were prepared by co-precipitation. Pt-only diesel oxidation catalysts supported on these mixed oxides were obtained by the incipient wetness method. The catalytic activities in simplified diesel exhaust gas before and after SO2 treatment were analyzed. The catalysts were characterized by X-ray diffraction, N2 adsorption-desorption, NH3/O2/CO2 temperature programmed desorption (NH3/O2/CO2-TPD) and X-ray photoelectron spectroscopy (XPS). The results of NH3-TPD suggested that the surface of the catalysts had multiple acidic sites, and the number of medium-strength acidic sites increased following treatment with SO2. The results of O2-TPD revealed that there were α and β oxygen species in the catalysts, and the amount of O2 desorption decreased for the SO2-treated catalysts. The Pt/Al2O3-SiO2 catalyst exhibited the lowest surface acidity and the largest amount of oxygen desorption. XPS indicated that the binding energy of Pt 4f5/2 decreased when the catalysts were treated with SO2. All the catalysts showed excellent activity for CO and C3H8, and the Pt/ ZrO2-SiO2 catalyst exhibited the best SO2 poisoning resistance, showing the potential for these catalysts to be applied in diesel oxidation.
  • 加载中
    1. [1]

      (1) Zelenka, P.; Cartellieri, W.; Herzog, P. Appl. Catal. B 1996, 10, 3.  doi: 10.1016/0926-3373(96)00021-5

    2. [2]

      (2) Ma, S. F. Petroleum Products Application Research 2010, No. 4, 52. [马淑芬. 石油商技, 2010, No. 4, 52.]

    3. [3]

      (3) Yu, Y. C. Modern Components 2008, No. 4, 22. [于永初. 现代零部件, 2008, No. 4, 22.]

    4. [4]

      (4) Min, C. B.; Ye, D. Q.; Zhou, Y. P. Guangzhou Environ. Sci. 2009, 24, 17. [明彩兵, 叶代启, 周遗品. 广州环境科学, 2009, 24, 17.]

    5. [5]

      (5) Burch, R.; Watling, T. C. Catal. Lett. 1997, 43, 19.  doi: 10.1023/A:1018974102756

    6. [6]

      (6) Burch, R.; Watling, T. C. J. Catal. 1997, 169, 45.  doi: 10.1006/jcat.1997.1686

    7. [7]

      (7) Vernoux, P.; Leinekugel-Le-Cocq, A .Y.; Gaillard, F. J. Catal. 2003, 219, 247.  doi: 10.1016/S0021-9517(03)00200-8

    8. [8]

      (8) Joubert, E.; Courtois, X.; Marecot, P.; Duprez, D. Appl. Catal. B 2006, 64, 103.  doi: 10.1016/j.apcatb.2005.11.006

    9. [9]

      (9) Yazawa, Y.; Kagi, N.; Komai, S-i.; Satsuma, A.; Murakami, Y.; Hattori, T. Catal. Lett. 2001, 72, 157.  doi: 10.1023/A:1009027926457

    10. [10]

      (10) Stein, H. J. Appl. Catal. B 1996, 10, 69.  doi: 10.1016/0926-3373(96)00024-0

    11. [11]

      (11) Galisteo, F. C.; Larese, C.; Mariscal, R.; Granados, M. L.; Fierro, J. L. G.; Ferná ndez-Ruiz, R.; Furió, M. Top. Catal. 2004, 30, 451.  doi: 10.1023/B:TOCA.0000029789.64784.47

    12. [12]

      (12) Galisteo, F. C.; Mariscal, R.; Granados, M. L.; Poves, M. D. Z.; Fierro, J. L. G.; Kr_ger, V.; Keiski, R. L. Appl. Catal. B 2007, 72, 272.  doi: 10.1016/j.apcatb.2006.11.004

    13. [13]

      (13) Nagai, Y.; Shinjoh, H.; Yokota, K. Appl. Catal. B 2002, 39, 149.  doi: 10.1016/S0926-3373(02)00082-6

    14. [14]

      (14) Burch, R.; Watling, T. C. Appl. Catal. B 1998, 17, 131.  doi: 10.1016/S0926-3373(98)00007-1

    15. [15]

      (15) Kolli, T.; Huuhtanen, M.; Hallikainen, A.; Kallinen, K.; Keiski, R. L. Catal. Lett. 2009, 127, 49.  doi: 10.1007/s10562-008-9651-x

    16. [16]

      (16) Kolli, T.; Kanerva, T.; Huuhtanen, M.; Vippola, M.; Kallinen, K.; Kinnunen, T.; Lepist_, T.; Lahtinen, J.; Keiski, R. L. Catal. Today 2010, 154, 303.  doi: 10.1016/j.cattod.2009.12.008

    17. [17]

      (17) Corro, G. React. Kinet. Catal. Lett. 2002, 75, 89.  doi: 10.1023/A:1014853602908

    18. [18]

      (18) Xue, E.; Seshan, K.; Ross, J. R. H. Appl. Catal. B 1996, 11, 65.  doi: 10.1016/S0926-3373(96)00034-3

    19. [19]

      (19) Corro, G.; Fierro, J. L. G.; Montiel, R.; Bañuelos, F. J. Mol. Catal. A:Chem. 2005, 228, 275.  doi: 10.1016/j.molcata.2004.09.056

    20. [20]

      (20) Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419.  doi: 10.1016/S0920-5861(02)00384-X

    21. [21]

      (21) Li, H. M.; Zhou, J. F.; Zhu, Q. C.; Zeng, S. H.; Wei. Z. L.; Chen, Y. Q.; ng, M. C. Chem. J. Chin. Univ. 2009, 30, 2484. [李红梅, 周菊发, 祝清超, 曾少华, 魏振玲, 陈耀强, 龚茂初. 高等学校化学学报, 2009, 30, 2484.]

    22. [22]

      (22) Liang, J.; Huang, H. Z.; Xie, Y. C. Acta Phys.-Chim. Sin. 2003, 19, 30. [梁健, 黄惠忠, 谢有畅. 物理化学学报, 2003, 19, 30.]

    23. [23]

      (23) Yang, P. C.; Cai, X. H.; Xie, Y. C. Acta Phys.-Chim. Sin. 2003, 19, 714. [杨鹏程, 蔡小海, 谢有畅. 物理化学学报, 2003, 19, 714.]

    24. [24]

      (24) Long, E. Y.; Wang, Y.; Zhang, X. Y.; Li, Y. L.; ng, M. C.; Chen, Y. Q. Chin. J. Catal. 2010, 31, 313. [龙恩艳, 王云, 张晓玉, 李移乐, 龚茂初, 陈耀强. 催化学报, 2010, 31, 313.]

    25. [25]

      (25) Xin, Q. Research Methods of Solid Catalyst; Science Press: Beijing, 2004; pp 305-306. [辛勤. 固体催化剂研究方法. 北京:科学出版社, 2004: 305-306.]

    26. [26]

      (26) Ming, C. B.; Ye, D. Q.; Lang, H. Vehi. Engine 2008, No. 173, 14. [明彩兵, 叶代启, 梁红. 车用发动机, 2008, No. 173, 14.]

    27. [27]

      (27) Chen, T.; Li, W. K.; Yu, C. Y. Acta Chimica. Sinica. 1999, 57, 986. [陈铜, 李文钊, 于春英. 化学学报, 1999, 57, 986.]

    28. [28]

      (28) Wu, H. C.; Liu, L. C.; Yang, S. M. Appl. Catal. A 2001, 211, 159.  doi: 10.1016/S0926-860X(00)00869-3

    29. [29]

      (29) Olsson, L.; Fridell, E. J. Catal. 2002, 210, 340.  doi: 10.1006/jcat.2002.3698

    30. [30]

      (30) Yoshida, H.; Yazawa, Y.; Hattori, T. Catal. Today 2003, 87, 19.  doi: 10.1016/j.cattod.2003.10.001

    31. [31]

      (31) Burch, R.; Halpin, E.; Hayes, M.; Ruth, K.; Sullivan, J. A. Appl. Catal. B 1998, 19, 199.  doi: 10.1016/S0926-3373(98)00079-4

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Hengyi ZHULiyun JUHaoyue ZHANGJiaxin DUYutong XIELi SONGYachao JINMingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    11. [11]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    12. [12]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(1081)
  • Abstract views(2163)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return