Citation:
WANG Shao-Zeng, ZOU Hong-Hu, MENG Ming, LI Zhi-Jun, BAO Jun, LI Xin-Gang. The Performance of the NOx Storage Capacity and Sulfur Tolerance of the La0.7Sr0.3Co1-xFexO3 Catalyst[J]. Acta Physico-Chimica Sinica,
;2012, 28(06): 1474-1480.
doi:
10.3866/PKU.WHXB201203311
-
In this paper, a series of La0.7Sr0.3Co1-xFexO3 (x=0, 0.2, 0.6, and 1.0) catalysts was synthesized by a sol-gel method with calcination at 700 °C in static air. The effect of the Fe doping on the structure, the performance of the NOx storage, sulfur tolerance and regeneration of the perovskite catalysts was investigated. Our results showed that the partial substitution of Co with Fe improved the depersion of the SrCO3 phase, and that the perovskite phase became the only species detected from the X-ray diffraction (XRD) patterns. The NOx storage capacity (NSC) of the catalysts dropped following an increase in the proportion of Fe doping. The deposition of sulfate on the surface and the partial structural damage of the La0.7Sr0.3CoO3 catalyst led to a dramatic reduction in the NSC and the NO oxidation capacity after the sulfation treatment: the NSC being reduced by 64.2%, and the conversion of NO-to-NO2 falling to 43.4% from 72.8%. The sulfur tolerance of the perovskite catalyst, however, was improved after doping with Fe at the B sites of the La0.7Sr0.3CoO3 catalyst. Of all of these catalysts, the perovskite with 60% of Fe doping (the Fe60 sample) gave the best performance for sulfur tolerane properties and regeneration ability. The NSC of the Fe60 sample was reduced by only 16.6%, and the NO-to-NO2 conversion reached the value almost similar to that of the fresh sample (i.e. 69.1%).
-
Keywords:
-
Lean-burn
, - NOx,
- Storage,
- Perovskite,
- Sulfur tolerance,
- Regeneration,
- La0.7Sr0.3Co1-xFexO3
-
-
-
-
[1]
(1) Kaspar, J.; Fornasiero, P.; Hickey, N. Catal. Today 2003, 77, 419. doi: 10.1016/S0920-5861(02)00384-X
-
[2]
(2) Kang, S. F.; Jiang, Z.; Hao, Z. P. Acta Phys. -Chim. Sin. 2005, 21, 278. [康守方, 蒋正, 郝郑平. 物理化学学报, 2005, 21, 278.]
-
[3]
(3) Takahashi, N.; Shinjoh, H.; Iijima, T.; Suzuki, T.; Yamazaki, K.; Yokota, K.; Suzuki, H.; Miyoshi, N.; Matsumoto, S.; Tanizawa, T.; Tanaka, T.; Tateishi S.; Kasahara, K. Catal. Today 1996, 27, 63. doi: 10.1016/0920-5861(95)00173-5
-
[4]
(4) Li, X. G.; Meng, M.; Lin, P. Y.; Huang, Z. J.; Fu, Y. L.; Hu, T. D.; Xie, Y. N. Acta Phys. -Chim. Sin. 2001, 17, 1072. [李新刚, 孟明, 林培琰, 黄志坚, 伏义路, 谢亚宁, 胡天斗. 物理化学学报, 2001, 17, 1072.]
-
[5]
(5) Li, X. G.; Meng, M.; Lin, P. Y.; Fu, Y. L.; Hu, T. D.; Xie, Y. N.; Zhang, J. Top. Catal. 2003, 22, 111. doi: 10.1023/A:1021480115825
-
[6]
(6) Fridell, E.; Persson, H.; Westerberg, B.; Olsson, L.; Skoglundh, M. Catal. Lett. 2000, 66, 71. doi: 10.1023/A:1019074901578
-
[7]
(7) Epling, W.; Campbell, L.; Yezerets, A.; Currier, N.; Parks, J. Catal. Rev. Sci. & Eng. 2004, 46, 163. doi: 10.1081/CR-200031932
-
[8]
(8) Li, X. G.; Vernoux, P. Appl. Catal. B 2005, 61, 267. doi: 10.1016/j.apcatb.2005.06.003
-
[9]
(9) Roy, S.; Baiker, A. Chem. Rev. 2009, 109, 4054. doi: 10.1021/cr800496f
-
[10]
(10) Sedlmair, C.; Seshan, K.; Jentys, A.; Lercher, J. Catal. Today 2002, 75, 413. doi: 10.1016/S0920-5861(02)00091-3
-
[11]
(11) Dawody, J.; Skoglundh, M.; Olsson, L.; Fridell, E. Appl. Catal. B 2007, 70, 179. doi: 10.1016/j.apcatb.2005.11.021
-
[12]
(12) Xiao, J. H.; Li, X. H.; Deng, S.; Xu, J. C.; Wang, L. F. Acta Phys. -Chim. Sin. 2006, 22, 815. [肖建华, 李雪辉, 邓莎, 徐建昌, 王乐夫. 物理化学学报, 2006, 22, 815.]
-
[13]
(13) Pei, M. X.; Lin, H.; Shangguan W. F.; Huang, Z. Acta Phys. -Chim. Sin. 2005, 21, 255. [裴梅香, 林赫, 上官文峰, 黄震. 物理化学学报, 2005, 21, 255.]
-
[14]
(14) Liu, J.; Zhao, Z.; Lan, J.; Xu, C.; Duan, A.; Jiang, G.; Wang, X.; He, H. J. Phys. Chem. C 2009, 113, 17114. doi: 10.1021/jp9056303
-
[15]
(15) Li, X. G.; Chen, J. F.; Lin, P. Y.; Meng, M.; Fu, Y. L.; Tu, J.; Li, Q. X. Catal. Commun. 2004, 5, 25. doi: 10.1016/j.catcom.2003.11.002
-
[16]
(16) Xian, H.; Zhang, X. W.; Li, X. G.; Li, L. Y.; Zou, H. H.; Meng, M.; Li, Q.; Tan, Y. S.; Tsubaki, N. J. Phys. Chem. C 2010, 114, 11844. doi: 10.1021/jp100197c
-
[17]
(17) Xian, H.; Li, F. L.; Li, X. G.; Zhang, X. W.; Meng, M.; Zhang, T. Y.; Tsubaki, N. Fuel Proc. Technol. 2011, 92, 1718. doi: 10.1016/j.fuproc.2011.04.021
-
[18]
(18) Xian, H.; Zhang, X. W.; Li, X. G.; Zou, H. H.; Meng, M.; Zou, Z. Q.; Guo, L. H.; Tsubaki, N. Catal. Today 2010, 158, 215. doi: 10.1016/j.cattod.2010.03.026
-
[19]
(19) Pan, G. H.; Meng, M.; Li, X. G. Chin. J. Catal. 2011, 32, 135. [潘广宏, 孟明, 李新刚. 催化学报, 2011, 32, 135.]
-
[20]
(20) Milt, V.; Ulla, M.; Miró, E. Appl. Catal. B 2005, 57, 13. doi: 10.1016/j.apcatb.2004.09.022
-
[21]
(21) Chen, J. F.; Meng, M.; Lin, P. Y.; Li, X. G.; Fu, Y. L.; Yu, S. M. Chin. J. Catal. 2003, 24, 419. [陈加福, 孟明, 林培琰, 李新刚, 伏义路, 俞寿明. 催化学报, 2003, 24, 419.]
-
[22]
(22) Hodjati, S.; Petit, C.; Pitchon, V.; Kiennemann, A. Appl. Catal. B 2000, 27, 117. doi: 10.1016/S0926-3373(00)00139-9
-
[23]
(23) Hodjati, S.; Petit, C.; Pitchon, V.; Kiennemann, A. Appl. Catal. B 2001, 30, 247. doi: 10.1016/S0926-3373(00)00249-6
-
[24]
(24) Yamazaki, K.; Suzuki, T.; Takahashi, N.; Yokota, K.; Sugiura, M. Appl. Catal. B 2001, 30, 459. doi: 10.1016/S0926-3373(00)00263-0
-
[25]
(25) Li, X. G.; Dong, Y. H.; Xian, H.; Hernández, W. Y.; Meng, M.; Zou, H. H.; Ma, A. J.; Zhang, T. Y.; Jiang, Z.; Tsubaki, N.; Vernoux, P. Energy Environ. Sci. 2011, 4, 3351. doi: 10.1039/c1ee01726h
-
[26]
(26) Ferri, D.; Forni, L.; Dekkers, M.; Nieuwenhuys, B. Appl. Catal. B 1998, 16, 339. doi: 10.1016/S0926-3373(97)00090-8
-
[27]
(27) Fierro, J.; Pena, M.; Tejuca, L. J. Mater. Sci. 1988, 23, 1018. doi: 10.1007/BF01154005
-
[28]
(28) Tejuca, L.; Bell, A.; Ferri, D.; Pena, M. Appl. Surf. Sci. 1988, 31, 301. doi: 10.1016/0169-4332(88)90095-5
-
[1]
-
-
-
[1]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[2]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[3]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
-
[4]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[5]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[6]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[7]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[8]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[9]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[10]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[13]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[14]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[15]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[16]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[17]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[18]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[19]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[20]
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
-
[1]
Metrics
- PDF Downloads(943)
- Abstract views(2565)
- HTML views(11)