Citation: SHEN Li-Ying, WU Xiao-Ming, HUA Yu-Lin, DONG Mu-Sen, YIN Shou-Gen, ZHENG Jia-Jin. Improving the Efficiency of Blue Organic Light-Emitting Diodes by Employing Cs-Derivatives as the n-Dopant[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1497-1501. doi: 10.3866/PKU.WHXB201203273 shu

Improving the Efficiency of Blue Organic Light-Emitting Diodes by Employing Cs-Derivatives as the n-Dopant

  • Received Date: 28 December 2011
    Available Online: 27 March 2012

    Fund Project: 国家自然科学基金(60906022, 60676051) (60906022, 60676051) 天津市自然科学基金(10JCYBJC01100) (10JCYBJC01100) 天津市教委科学发展基金(2011ZD02) (2011ZD02)江苏省高校自然科学发展基金(09KJB140006)资助项目 (09KJB140006)

  • The efficiency of organic light-emitting diodes (OLEDs) was markedly improved using the novel electron transporting material 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline (NBPhen) doped with Cs-derivatives including cesium carbonate (Cs2CO3) and cesium acetate (CH3COOCs) as the n-type dopant. The operating voltage of devices containing these materials as an n-type electron transporting layer (n-ETL) was significantly reduced. Optimized devices with Cs2CO3-doped or CH3COOCsdoped n-ETL (ITO/β-NPB/CBP:5%(w) N-BDAVBi/NBPhen/NBPhen:Cs2CO3 (or CH3COOCs)/Al) exhibited excellent electroluminescent performance with current densities of 551.80 and 527.88 mA·cm-2 at 14 V, corresponding brightnesses of 39750 and 39820 cd·m-2, and current efficiencies of 14.60 and 14.40 cd· A-1 at 10000 cd·m-2, respectively. These results were superior to that of conventional device (ITO/β-NPB/ CBP:5%(w)N-BDAVBi/NBPhen/Cs2CO3/Al) without an n-ETL, which exhibited a current density of 312.39 mA·cm-2 at 14 V, corresponding brightness of 25190 cd·m-2, and current efficiency of 9.45 cd·A-1 at 10000 cd·m-2. In addition, the reason for the increase in the efficiency of n-type doped devices has been analyzed based on the concept of the doping mechanism in organic semiconductors and the energy level scheme of the devices.
  • 加载中
    1. [1]

      (1) Kamtekar, K. T.; Monkman, A. P.; Bryce, M. R. Adv. Mater. 2010, 22, 572.  doi: 10.1002/adma.200902148

    2. [2]

      (2) D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.

    3. [3]

      (3) Ji, W. Y.; Zhang, L. T.; Gao, R. X.; Zhang, L. M.; Xie. W. F.; Zhang, H. Z.; Li, B. Opt. Express. 2008, 16, 15489.  doi: 10.1364/OE.16.015489

    4. [4]

      (4) Yuan, Y. B.; Li, S.; Wang, Z.; Xu, H. T.; Zhou, X. Opt. Express. 2009, 17, 1577.  doi: 10.1364/OE.17.001577

    5. [5]

      (5) Zhang, Z. Q.; Wang, Q.; Dai, Y. F.; Liu, Y. P.; Wang, L. X.; Ma, D. G. Org. Electron. 2009, 10, 491.  doi: 10.1016/j.orgel.2009.02.006

    6. [6]

      (6) Qi, X. F.; Slootsky, M.; Forrest, S. Appl. Phys. Lett. 2008, 93, 193306.   doi: 10.1063/1.3021014

    7. [7]

      (7) Ma, T.; Jiang, Y. D.; Yu, J. S.; Lou, S. L.; Li, L.; Zhang, Q. Acta Phys. -Chim. Sin. 2008, 24, 977. [马涛, 蒋亚东, 于军胜, 娄双玲, 李璐, 张清. 物理化学学报, 2008, 24, 977.]  doi: 10.1016/S1872-1508(08)60043-1

    8. [8]

      (8) Su, S. J.; nmori, E.; Sasabe, H.; Kido, J. Adv. Mater. 2008, 20, 4189.

    9. [9]

      (9) Huang, H.; Fu, Q.; Zhuang, S. Q.; Liu, Y. K.; Wang, L.; Chen, J. S.; Ma, D.G.; Yang, C. L. J. Phys. Chem. C. 2011, 115, 4872.

    10. [10]

      (10) Wang, Z. Q.; Xu, C.; Wang, W. Z.; Duan, L.M.; Li, Z.; Zhao, B. T.; Ji, B. M. New J. Chem. 2012, 36, 662.  doi: 10.1039/c2nj20809a

    11. [11]

      (11) Wang, Y.; Hua, Y. L.; Wu, X. M.; Zhang, L. J.; Hou, Q. C.; Guan, F.; Zhang, N.; Yin, S. G.; Cheng, X. M. Org. Electron. 2008, 9, 692.  doi: 10.1016/j.orgel.2008.05.001

    12. [12]

      (12) Seo, J. H.; Lee, K. H.; Seo, B. M.; Koo, J. R.; Moo, S. J.; Park, J. K.; Yoon, S. S.; Kim, Y. K. Org. Electron. 2010, 11, 1605.  doi: 10.1016/j.orgel.2010.07.012

    13. [13]

      (13) Gebeyehu, D.; Walzer, K.; He, G.; Pfeiffer, M.; Leo, K.; Brandt, J.; Gerhard, A.; Stöβel, P.; Vestweber, H. Synth. Met. 2005, 148, 205. Kido, J.; Matsumoto, T. Appl. Phys. Lett. 1998, 73, 2866.  doi: 10.1016/j.synthmet.2004.09.024

    14. [14]

      (15) Oyamada, T.; Sasabe, H.; Adachi. C.; Murase, S.; Tominaga, T.; Maeda, C. Appl. Phys. Lett. 2005, 86, 033503.  doi: 10.1063/1.1852707

    15. [15]

      (16) Wu, C. I.; Lin, C.T.; Chen, Y. H.; Chen, M. H.; Lu, Y. J.; Wu, C. C. Appl. Phys. Lett. 2006, 88, 152104.  doi: 10.1063/1.2192982

    16. [16]

      (17) Leem, D. S.; Kim, S. Y.; Kim, J. J.; Chen, M. H.; Wu, C. I. Electrochem. Solid-State lett. 2009, 12, 8.

    17. [17]

      (18) Wang, F. X.; Xiong, T.; Qiao, X. F.; Ma, D. G. Org. Electron. 2009, 10, 266.  doi: 10.1016/j.orgel.2008.11.018

    18. [18]

      (19) Yook, K. S.; Jeon, S. O.; Min, S. Y.; Lee, J. Y.; Yang, H. J.; Noh, T.; Kang, S. K.; Lee, T. W. Adv. Mater. 2010, 20, 1797.

    19. [19]

      (20) Ma, J. W.; Xu, W.; Jiang, X. Y.; Zhang, Z. L. Synth. Met. 2008, 158, 810.  doi: 10.1016/j.synthmet.2008.05.009

    20. [20]

      (21) Pfeiffer, M.; Leo, K.; Zhou, X.; Huang, J. S.; Hofmann, M.; Werner, A.; Nimoth, J. B. Org. Electron. 2003, 4, 89.  doi: 10.1016/j.orgel.2003.08.004

    21. [21]

      (22) Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Chem. Rev. 2007, 107, 1233.  doi: 10.1021/cr050156n

    22. [22]

      (23) Chen, S. Yi.; Chu, T. Y.; Chen, J. F.; Su, C. Y.; Chen, C. H. Appl. Phys. Lett. 2006, 89, 053518.  doi: 10.1063/1.2335374

    23. [23]

      (24) Band, A.; Albu-Yaron, A.; Livneh, T.; Cohen, H.; Feldman, Y.; Shimon, L.; Popovitz-Biro, R.; Lyahovitskaya, V.; Tenne, R. J. Phys. Chem. B. 2004, 108, 12360.  doi: 10.1021/jp036432o

    24. [24]

      (25) Ganzorig, C.; Fujihira, M. Appl. Phys. Lett. 2004, 85, 4774.  doi: 10.1063/1.1819984

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    4. [4]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    5. [5]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    6. [6]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    10. [10]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    11. [11]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    12. [12]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    13. [13]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    14. [14]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    15. [15]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    16. [16]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(937)
  • Abstract views(2534)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return