Citation: HU Wen-Liang, XU Gang, MA Jian-Wei, XIONG Bin, SHI Ji-Fu. Optical and Phase Transition Properties of TixV1-xO2 Thin Films[J]. Acta Physico-Chimica Sinica, ;2012, 28(06): 1533-1538. doi: 10.3866/PKU.WHXB201203191 shu

Optical and Phase Transition Properties of TixV1-xO2 Thin Films

  • Received Date: 13 December 2011
    Available Online: 19 March 2012

    Fund Project: 国家自然科学基金(51102235) (51102235) 广东省产学研结合计划(2010B090400109) (2010B090400109)广东省中国科学院全面战略合作计划(2011B090300044)资助项目 (2011B090300044)

  • TixV1-xO2 (0≤x≤1) thin films with different molar ratios of V/Ti were prepared on c-plane sapphire (0001) substrates by radio frequency magnetron sputtering. The microstructure and optical properties of the thin films were determined by X-ray diffraction (XRD), Raman spectroscopy, and UV-visible-near infrared (UV-Vis-NIR) spectroscopy. The width of the optical band gap was calculated and the integrated solar transmittance of the films was characterized. As the content of titanium was increased, infrared regulation and thermal hysteresis were gradually reduced until they disappeared. The results show that the band gap of the thin films broadens as the content of titanium increases, causing the optical absorption edge to exhibit a blue shift. Conversely, the band gap narrows as the proportion of vanadium is increased, which causes a red shift of the optical absorption edge.
  • 加载中
    1. [1]

      (1) Morin, F. J. Phys. Rev. Lett. 1959, 3, 34.  doi: 10.1103/PhysRevLett.3.34

    2. [2]

      (2) Cavalleri, A.; Tóth, Cs.; Siders, C. W.; Squier, J. A.; Ráksi, F.; Forget, P.; Kieffer, J. C. Phys. Rev. Lett. 2001, 87, 237401.  doi: 10.1103/PhysRevLett.87.237401

    3. [3]

      (3) Béteille, F.; Livage, J. J. Sol-Gel. Sci. Technol. 1998, 13, 915.  doi: 10.1023/A:1008679408509

    4. [4]

      (4) He, Y. F.; Xu, G.; Zhu, J.; Cheng, D. M.; Wang, C. P. Micronanoelectronic Technology. 2008, 45, 387. [何云富, 徐刚, 朱俊, 陈德明, 王春平.微纳电子技术, 2008, 45, 387.]

    5. [5]

      (5) Xu, G.; Jin, P.; Tazawa, M.; Yoshimura, K. Sol. Energy Mater. Sol. Cells. 2004, 83, 29.  doi: 10.1016/j.solmat.2004.02.014

    6. [6]

      (6) Christmann, T.; Felde, B.; Niessner, W.; Schalch, D.; Scharmann, A. Thin Solid Films 1996, 287, 134.  doi: 10.1016/S0040-6090(96)08770-6

    7. [7]

      (7) Du, J.; Gao, Y. F.; Luo, H. G.; Zhang, Z. T.; Kang, L. T.; Chen, Z. Sol. Energy Mater. Sol. Cells 2011, 95, 1604.  doi: 10.1016/j.solmat.2011.01.009

    8. [8]

      (8) Burkhardt, W.; Christmann, T.; Franke, S.; Kriegseis, W.; Meister, D.; Meyer, B. K.; Niessner, W.; Schach, D.; Scharmann, A. Thin Solid Films 2002, 402, 226.  doi: 10.1016/S0040-6090(01)01603-0

    9. [9]

      (9) Soltani, M.; Chaker, M.; Haddad, E.; Kruzelecky, R. V.; Mar t, J. Appl. Phys. Lett. 2004, 85, 1958.  doi: 10.1063/1.1788883

    10. [10]

      (10) Du, J.; Gao, Y. F.; Luo, H. J.; Kang, L. T.; Zhang, Z. T.; Chen, Z.; Cao, C. X. Sol. Energy Mater. Sol. Cells. 2011, 95, 469.  doi: 10.1016/j.solmat.2010.08.035

    11. [11]

      (11) Kakiuchida, H.; Jin, P.; Tazawa, M. Thin Solid Films 2008, 516, 4563.  doi: 10.1016/j.tsf.2007.05.096

    12. [12]

      (12) Zhao, G. L.; Han, G. R.; Takahashi, M.; Yoko, T. Thin Solid Films 2002, 410, 14.  doi: 10.1016/S0040-6090(02)00252-3

    13. [13]

      (13) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.  doi: 10.1016/j.surfrep.2008.10.001

    14. [14]

      (14) Zhang, X. Y.; Chao, M. J.; Liang, E. J.; Hu, F.; Yuan, F. Journal of Inorganic Materials. 2009, 24, 34. [张晓勇, 晁明举, 梁二军, 胡帆, 袁斌. 无机材料学报, 2009, 24, 34.]  doi: 10.3724/SP.J.1077.2009.00034

    15. [15]

      (15) Zhang, X. R.; Lin, Y. H.; Zhang, J. F.; He, D. Q.; Wang, D. J. Acta Phys. -Chim. Sin. 2010, 26, 2733. [张晓茹, 林艳红, 张健夫, 何冬青, 王德军. 物理化学学报, 2010, 26, 2733.]

    16. [16]

      (16) Lazarovits, B.; Kim, K.; Haule, K.; Kotliar, G. Phys. Rev. B. 2010, 81, 115117.  doi: 10.1103/PhysRevB.81.115117

    17. [17]

      (17) Béteille, F.; Morineau, R.; Livage, J.; Nagano, M. Mater. Res. Bull. 1997, 32, 1109.  doi: 10.1016/S0025-5408(97)00084-6

    18. [18]

      (18) Masih, D.; Yoshitake, H.; Izumi, Y. Appl. Catal. A-gen. 2007, 325, 276.  doi: 10.1016/j.apcata.2007.02.037

    19. [19]

      (19) Lim, J. W.; Yoo, S. J.; Park, S. H.; Yun, S. U.; Sung, Y. E. Sol. Energy Mater. Sol. Cells 2009, 93, 2069.  doi: 10.1016/j.solmat.2009.03.008

    20. [20]

      (20) Woodley, S. M. Chem. Phys. Lett. 2008, 453, 167.  doi: 10.1016/j.cplett.2008.01.018

    21. [21]

      (21) Guinneton, F.; Valmalette, J. C.; Gavarri, J. R. Optical Materials 2000, 15, 111.  doi: 10.1016/S0925-3467(00)00023-9

    22. [22]

      (22) Liang, J. R.; Hu, M.; Wang, X. D.; Li, G. K.; Ji, A.; Yang, F. H.; Liu, J.; Wu, N. J.; Chen, H. D. Acta Phys. -Chim. Sin. 2009, 25, 1523. [梁继然, 胡明, 王晓东, 李贵柯, 季安, 杨富华, 刘剑, 吴南健, 陈弘达. 物理化学学报, 2009, 25, 1523.]

    23. [23]

      (23) Gurvitch, M.; Luryi, S.; Polyakov, A.; Shabalov, A.;Dudley, M.; Wang, G.; Ge, S.; Yakovlev, V. J. Appl. Phys. 2007, 102, 033504.  doi: 10.1063/1.2764245

    24. [24]

      (24) Oh, C.; Yoon, S.; Kim, S.; Han, J.; Chung, H.; Jeong, H. J. J. Pharmaceut. Biomed. 2010, 53, 762.  doi: 10.1016/j.jpba.2010.05.008

    25. [25]

      (25) Xiao, P.; Zheng, S. B.; You, J. L.; Jiang, G. C.; Chen, H.; Zeng, H. Spectroscopy and Spectral Analysis. 2007, 27, 936. [肖萍, 郑少波, 尤静林, 蒋国昌, 陈辉, 曾昊. 光谱学与光谱分析, 2007, 27, 936.]

    26. [26]

      (26) Pan, X. Y.; Ma, X. M. Materials Science and Engineering. 2001, 19, 138. [潘晓燕, 马学鸣. 材料科学与工程, 2001, 19, 138.]

    27. [27]

      (27) Sudakar, C.; Kharel, P.; Lawes, G.; Suryanarayanan, R.; Naik, R.; Naik, V. M. J. Phys.: Condens. Matter. 2007, 19, 026212.  doi: 10.1088/0953-8984/19/2/026212

    28. [28]

      (28) Ma, J. W.; Xu, G.; Miao, L.; Tazawa, M.; Tanemura, S. Jpn. J. Appl. Phys. 2011, 50, 020215.  doi: 10.1143/JJAP.50.020215

    29. [29]

      (29) Ding, S.; Liu, Y. L.; Siu, G. G. Acta Physica Sinica. 2005, 54, 4416. [丁硕, 刘玉龙, 萧季驹. 物理学报, 2005, 54, 4416.]

    30. [30]

      (30) Xu, G.; Jin, P.; Tazawa, M.; Yoshimura, K. Jpn. J. Appl. Phys. 2004, 43, 186.  doi: 10.1143/JJAP.43.186

    31. [31]

      (31) Kang, L. T.; Gao, Y. F.; Luo, H. J.; Zhang, C.; Du, J.; Zhang, Z. T. ACS Appl. Mater. Interfaces 2011, 3, 135.  doi: 10.1021/am1011172

    32. [32]

      (32) Tauc, J.; Gri rivici, R.; Vancu, A. Phys. Stat. Sol. 1966, 15, 627.  doi: 10.1002/pssb.19660150224

    33. [33]

      (33) Tauc, J.; Menth, A. J. Non-Cryst. Solids. 1972, 8-10, 569.

    34. [34]

      (34) Tauc, J. Amorphous and Liquid Semiconductors, 1st ed.; Plenum Press: New York, 1974; 171.  doi: --- Either first page or author must be supplied.

    35. [35]

      (35) Saffarini, G.; Saiter, J. M.; Schmitt, H. Optical Materials 2007, 29, 1143.  doi: 10.1016/j.optmat.2006.05.003

  • 加载中
    1. [1]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    13. [13]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    14. [14]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    20. [20]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

Metrics
  • PDF Downloads(774)
  • Abstract views(2186)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return