Citation: WANG Wei-Yan, ZHANG Xiao-Zhe, YANG Yun-Quan, YANG Yan-Song, PENG Hui-Zuo, LUO He-An. Preparation of La-Ni-Mo-B Amorphous Catalyst and Its Catalytic Properties for Hydrodeoxygenation of Phenol[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1243-1251. doi: 10.3866/PKU.WHXB201203081 shu

Preparation of La-Ni-Mo-B Amorphous Catalyst and Its Catalytic Properties for Hydrodeoxygenation of Phenol

  • Received Date: 1 January 2012
    Available Online: 8 March 2012

    Fund Project: 湘潭大学资助基金(2011XZX11) (2011XZX11)湖南省教育厅开放基金(10K062)资助项目 (10K062)

  • Lanthanum-promoted Ni-Mo-B amorphous catalysts were prepared by chemical reduction of the corresponding metal salts with sodium borohydride aqueous solution. Scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES), and X-ray photoelectron spectroscopy (XPS) were used to characterize the resulting materials. Phenol was used as model compound to test the hydrodeoxygenation (HDO) activity of the La-Ni-Mo-B amorphous catalysts. Adding lanthanum could decrease the particle size, increase the content of Ni0 and promote the reduction of Mo6+ to Mo4+ . But excess lanthanum would cover some of the Ni0, and Mo4+ active sites. The high hydrogenation activity was attributed to the amorphous structure of the catalyst and the high content of Ni0 and the high degree of deoxygenation was attributed to the high content of MoO2. The HDO reation of phenol on the La-Ni-Mo-B amorphous catalyst proceeded with a hydrogenation-dehydration route, thus decreasing the aromatic content of the HDO products. Both the conversion and the total deoxygenation degree were up to 99.0%. The deactivation of the La-Ni-Mo-B amorphous catalysts during the HDO reation of phenol at high temperature was mainly caused by the crystallization of the amorphous structure.
  • 加载中
    1. [1]

      (1) Bull, T. E.; Turner, J. A. Science 1999, 285, 1209.

    2. [2]

      (2) Zakzeski, J.; Bruijnincx, P. C. A.; Jongerius, A. L.; Weckhuysen, B. M. Chem. Rev. 2010, 110, 3552.  

    3. [3]

      (3) Furimsky, E. Appl. Catal. A: Gen. 2000, 199, 147.  

    4. [4]

      (4) önal, E. P.; Uzun, B. B.; Pütün, A. E. Fuel Process. Technol. 2011, 92, 879.  

    5. [5]

      (5) French, R.; Czernik, S. Fuel Process. Technol. 2010, 91, 25.  

    6. [6]

      (6) Bunch, A. Y.; Wang, X.; Ozkan, U. S. J. Mol. Catal. A: Chem. 2007, 270, 264.  

    7. [7]

      (7) Senol, O. I.; Ryymin, E. M.; Viljava, T. R.; Krause, A. O. I. J. Mol. Catal. A: Chem. 2007, 277, 107.  

    8. [8]

      (8) Yang, Y.; Luo, H. a.; Tong, G.; Smith, K. J.; Tye, C. T. Chin. J. Chem. Eng. 2008, 16, 733.  

    9. [9]

      (9) Ryymin, E. M.; Honkela, M. L.; Viljava, T. R.; Krause, A. O. I. Appl. Catal. A: Gen. 2009, 358, 42.  

    10. [10]

      (10) Kubicka, D.; Bejblová, M.; Vlk, J. Top. Catal. 2010, 53, 168.  

    11. [11]

      (11) Badawi, M.; Paul, J. F.; Cristol, S.; Payen, E.; Romero, Y.; Richard, F.; Brunet, S.; Lambert, D.; Portier, X.; Popov, A.; Kondratieva, E.; upil, J. M.; El Fallah, J.; Gilson, J. P.; Mariey, L.; Travert, A.; Maugé, F. J. Catal. 2011, 282, 155.  

    12. [12]

      (12) Bui, V. N.; Laurenti, D.; Delichère, P.; Geantet, C. Appl. Catal. B: Environ. 2011, 101, 246.  

    13. [13]

      (13) Romero, Y.; Richard, F.; Brunet, S. Appl. Catal. B: Environ. 2010, 98, 213.  

    14. [14]

      (14) Yang, Y.; Gilbert, A.; Xu, C. Appl. Catal. A: Gen. 2009, 360, 242.  

    15. [15]

      (15) Whiffen, V. M. L.; Smith, K. J. Energy Fuels 2010, 24, 4728.  

    16. [16]

      (16) Li, K.; Wang, R.; Chen, J. Energy Fuels 2011, 25, 854.  

    17. [17]

      (17) Zhao, H. Y.; Li, D.; Bui, P.; Oyama, S. T. Appl. Catal. A: Gen. 2011, 391, 305.  

    18. [18]

      (18) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Angew. Chem. Int. Edit. 2009, 48, 3987.  

    19. [19]

      (19) Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Science 2010, 327, 68.  

    20. [20]

      (20) Li, N.; Huber, G. W. J. Catal. 2010, 270, 48.  

    21. [21]

      (21) Ruiz, P. E.; Leiva, K.; Garcia, R.; Reyes, P.; Fierro, J. L. G.; Escalona, N. Appl. Catal. A: Gen. 2010, 384, 78.  

    22. [22]

      (22) nzález-Borja, M. A. n.; Resasco, D. E. Energy Fuels 2011, 25, 4155.

    23. [23]

      (23) Nimmanwudipong, T.; Runnebaum, R. C.; Block, D. E.; Gates, B. C. Energy Fuels 2011, 25, 3417.  

    24. [24]

      (24) Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R. G.; Resasco, D. E. J. Catal. 2011, 280, 17.  

    25. [25]

      (25) Zhu, X.; Lobban, L. L.; Mallinson, R. G.; Resasco, D. E. J. Catal. 2011, 281, 21.  

    26. [26]

      (26) Wang, Y.; Fang, Y.; He, T.; Hu, H.; Wu, J. Catal. Commun. 2011, 12, 1201.  

    27. [27]

      (27) Yan, N.; Yuan, Y.; Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem. Int. Edit. 2010, 49, 5549.  

    28. [28]

      (28) Zhang, W.; Zhang, Y.; Zhao, L.; Wei, W. Energy Fuels 2010, 24, 2052.  

    29. [29]

      (29) Zhao, C.; Kou, Y.; Lemonidou, A. A.; Li, X.; Lercher, J. A. Chem. Commun. 2010, 46, 412.  

    30. [30]

      (30) Mei, D.; Karim, A. M.; Wang, Y. J. Phys. Chem. C 2011, 115, 8155.  

    31. [31]

      (31) Viljava, T. R.; Komulainen, R. S.; Krause, A. O. I. Catal. Today 2000, 60, 83.  

    32. [32]

      (32) Ferrari, M.; Bosmans, S.; Maggi, R.; Delmon, B.; Grange, P. Catal. Today 2001, 65, 257.  

    33. [33]

      (33) Bunch, A. Y.; Ozkan, U. S. J. Catal. 2002, 206, 177.  

    34. [34]

      (34) Senol, O. I.; Viljava, T. R.; Krause, A. O. I. Catal. Today 2005, 106, 186.  

    35. [35]

      (35) Gandarias, I.; Barrio, V. L.; Requies, J.; Arias, P. L.; Cambra, J. F.; Güemez, M. B. Int. J. Hydrogen Energy 2008, 33, 3485.  

    36. [36]

      (36) Yang, Y. Q.; Tye, C. T.; Smith, K. J. Catal. Commun. 2008, 9, 1364.  

    37. [37]

      (37) Zhao, B.; Chou, C. J.; Chen, Y. W. Ind. Eng. Chem. Res. 2010, 49, 1669.  

    38. [38]

      (38) Li, H.; Zhang, D.; Li, G.; Xu, Y.; Lu, Y.; Li, H. Chem. Commun. 2010, 46, 791.  

    39. [39]

      (39) Li, H.; Xu, Y.; Yang, H.; Zhang, F.; Li, H. J. Mol. Catal. A: Chem. 2009, 307, 105.  

    40. [40]

      (40) Chen, Y. W.; Sasirekha, N. Ind. Eng. Chem. Res. 2009, 48, 6248.  

    41. [41]

      (41) Rajesh, B.; Sasirekha, N.; Lee, S. P.; Kuo, H. Y.; Chen, Y. W. J. Mol. Catal. A: Chem. 2008, 289, 69.  

    42. [42]

      (42) Zheng, Y. X.; Yao, S. B.; Zhou, S. M. Acta Phys. -Chim. Sin. 2004, 20, 1352. [郑一雄, 姚士冰, 周绍民. 物理化学学报, 2004, 20, 1352.]

    43. [43]

      (43) Li, H.; Liu, J.; Xie, S.; Qiao, M.; Dai, W.; Li, H. J. Catal. 2008, 259, 104.  

    44. [44]

      (44) Tong, D. G.; Chu, W.; Luo, Y. Y.; Ji, X. Y.; He, Y. J. Mol. Catal. A: Chem. 2007, 265, 195.  

    45. [45]

      (45) Tong, D.; Han, X.; Chu, W.; Chen, H.; Ji, X. Y. Mater. Lett. 2007, 61, 4679.  

    46. [46]

      (46) Li, H.; Yang, P.; Chu, D.; Li, H. Appl. Catal. A: Gen. 2007, 325, 34.  

    47. [47]

      (47) Li, H.; Li, H.; Zhang, J.; Dai, W.; Qiao, M. J. Catal. 2007, 246, 301.  

    48. [48]

      (48) Long, J. Y.; Ma, L.; He, D. H. Acta Phys. -Chim. Sin. 2010, 26, 2719. [龙俊英, 马兰, 贺德华. 物理化学学报, 2010, 26, 2719.]

    49. [49]

      (49) Liu, Y. C.; Chen, Y. W. Ind. Eng. Chem. Res. 2006, 45, 2973.  

    50. [50]

      (50) Li, H.; Wu, Y.; Zhang, J.; Dai, W.; Qiao, M. Appl. Catal. A: Gen. 2004, 275, 199.  

    51. [51]

      (51) Chen, X.; Wang, S.; Zhuang, J.; Qiao, M.; Fan, K.; He, H. J. Catal. 2004, 227, 419.  

    52. [52]

      (52) Li, H.; Wu, Y.; Luo, H.; Wang, M.; Xu, Y. J. Catal. 2003, 214, 15.  

    53. [53]

      (53) Lin, M. H.; Zhao, B.; Chen, Y. W. Ind. Eng. Chem. Res. 2009, 48, 7037.  

    54. [54]

      (54) Liu, H.; Wang, H.; Shen, J.; Sun, Y.; Liu, Z. Catal. Today 2008, 131, 444.  

    55. [55]

      (55) Wu, M. X.; Li, W.; Zhang, M. H.; Tao, K. Y. Acta Phys. -Chim. Sin. 2011, 27, 953. [武美霞, 李伟, 张明慧, 陶克毅. 物理化学学报, 2011, 27, 953.]

    56. [56]

      (56) Liu, Y. C.; Chen, Y. W. Ind. Eng. Chem. Res. 2006, 45, 2973.  

    57. [57]

      (57) Shi, Q. J.; Lei, J. X.; Zhang, N. Acta Phys. -Chim. Sin. 2007, 23, 98. [石秋杰, 雷经新, 张宁. 物理化学学报, 2007, 23, 98.]

    58. [58]

      (58) Li, H.; Zhang, S.; Luo, H. Mater. Lett. 2004, 58, 2741.  

    59. [59]

      (59) Hou, Y.; Wang, Y.; He, F.; Han, S.; Mi, Z.; Wu, W.; Min, E. Mater. Lett. 2004, 58, 1267.  

    60. [60]

      (60) Li, H.; Luo, H.; Zhuang, L.; Dai, W.; Qiao, M. J. Mol. Catal. A: Chem. 2003, 203, 267.  

    61. [61]

      (61) Wang, W. Y.; Yang, Y. Q.; Luo, H. A.; Peng, H. Z.; He, B.; Liu, W. Y. Catal. Commun. 2011, 12, 1275.  

    62. [62]

      (62) Wang, W. Y.; Yang, Y. Q.; Luo, H. A.; Hu, T.; Liu, W. Y. Catal. Commun. 2011, 12, 436.  

    63. [63]

      (63) Wang, W. Y.; Yang, Y. Q.; Bao, J. G.; Luo, H. A. Catal. Commun. 2009, 11, 100.  

    64. [64]

      (64) Kukula, P.; Gabova, V.; Koprivova, K.; Trtik, P. Catal. Today 2007, 121, 27.  

    65. [65]

      (65) Parks, G. L.; Pease, M. L.; Burns, A. W.; Layman, K. A.; Bussell, M. E.; Wang, X.; Hanson, J.; Rodriguez, J. A. J. Catal. 2007, 246, 277.  

    66. [66]

      (66) Wu, Z.; Ge, S. Catal. Commun. 2011, 13, 40.  

    67. [67]

      (67) Liu, B.; Qiao, M.; Wang, J.; Fan, K. Chem. Commun. 2002, 1236.  

    68. [68]

      (68) Liu, S. C.; Liu, Z.; Wang, Z.; Wu, Y.; Yuan, P. Chem. Eng. J. 2008, 139, 157.  

    69. [69]

      (69) Patel, N.; Fernandes, R.; Miotello, A. J. Catal. 2010, 271, 315.  

    70. [70]

      (70) Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaff, M. W. Nature 1991, 353, 414.  

    71. [71]

      (71) Lu, L.; Rong, Z.; Du, W.; Ma, S.; Hu, S. ChemCatChem 2009, 1, 369.  

    72. [72]

      (72) Chen, X.; Li, H.; Dai, W.; Wang, J.; Ran, Y.; Qiao, M. Appl. Catal. A: Gen. 2003, 253, 359.  

    73. [73]

      (73) Zhang, R.; Li, F.; Shi, Q.; Luo, L. Appl. Catal. A: Gen. 2001, 205, 279.  

    74. [74]

      (74) Shen, J.; Chen, Y. J. Mol. Catal. A: Chem. 2007, 273, 265.  

    75. [75]

      (75) Zhang, X.; Ma, A.; Mu, X.; Min, E. Catal. Today 2002, 74, 77.  

    76. [76]

      (76) Liaw, B. J.; Chiang, S. J.; Chen, S. W.; Chen, Y. Z. Appl. Catal. A: Gen. 2008, 346, 179.  

    77. [77]

      (77) Meng, Q.; Li, H.; Li, H. J. Phys. Chem. C 2008, 112, 11448.  

    78. [78]

      (78) Patel, N.; Fernandes, R.; Miotello, A. J. Power Sources 2009, 188, 411.  

    79. [79]

      (79) Belatel, H.; Al-Kandari, H.; Al-Khorafi, F.; Katrib, A.; Garin, F. Appl. Catal. A: Gen. 2004, 275, 141.  

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(788)
  • Abstract views(2732)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return