Citation: JIANG Qian, CHU Wei, SUN Wen-Jing, LIU Feng-Si, XUE Ying. A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1101-1106. doi: 10.3866/PKU.WHXB201203054 shu

A DFT Study of Methane Adsorption on Nitrogen-Containing Organic Heterocycles

  • Received Date: 5 January 2012
    Available Online: 5 March 2012

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB201202)资助 (973) (2011CB201202)

  • In coal, nitrogen exists in a variety of forms. We presented 11 compounds of different hybridization forms and nitrogen contents. Density functional theory (DFT) simulation method was employed to study the adsorption behaviors of methane on these nitrogen-containing organic compounds. The interactions were studied and characterized by their adsorption energies, Mulliken charges and electrostatic potential surfaces. The adsorption energies varied from 3.81 to 6.82 kJ·mol-1, attributable to the weak hydrogen-bonding and electrostatic interactions. The results revealed that the adsorption energy of sp2-N with methane was higher than that of sp3-N and that higher nitrogen contents provided more positive sites for methane adsorption.
  • 加载中
    1. [1]

      (1) Hamelinck, C. N.; Faaij, A. P. C.; Turkenburg, W. C.; van Bergen, F.; Pagnier, H. J. M.; Barzandji, O. H. M.; Wolf, K. H. A. A.; Ruijg, G. J. Energy 2002, 27, 647.  

    2. [2]

      (2) Yu, H. G.; Zhou, G. Z.; Fan, W. T.; Ye, H. P. Int. J. Coal. Geol. 2007, 71, 345.  

    3. [3]

      (3) Wei, X. R.; Wang, G. X.; Massarotto, P.; lding, S. D.; Rudolph, V. Chem. Eng. Sci. 2007, 62, 4193.  

    4. [4]

      (4) Van Bergen, F.; Gale, J.; Damen, K. J.; Wildenborg, A. F. B. Energy 2004, 29, 1611.  

    5. [5]

      (5) Van Bergen, F.; Pagnier, H. J. M.; Krooss, B. M.; Van Der Meer, L. G. H. Greenhouse Gas Control Technologies 2001, 555.  

    6. [6]

      (6) Skhonde, M. P.; Strydom, C. A.; Bunt, J. R.; Schobert, H. H. J. Anal. Appl. Pyrol. 2011, 91, 205.  

    7. [7]

      (7) Kurniawan, Y.; Bhatia, S. K.; Rudolph, V. AICHE J. 2006, 52, 957.  

    8. [8]

      (8) Liu, Y. Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809.  

    9. [9]

      (9) Jiang, W. P.; Cui, Y. J.; Zhang, Q.; Zhong, L. W.; Li, Y. H.; Journal of China Coal Society 2007, 32, 292.

    10. [10]

      (10) Jiang, W. P. China Coalbed Methane 2009, 6, 19.

    11. [11]

      (11) Meng, H. P.; Zhao, W.; Zhang, R. G.; Wang, B. J. Coal Conversion 2008, 31, 31.

    12. [12]

      (12) Knicker, H.; Hatcher, P. G.; Scaroni, A. W. International Journal of Coal Geology 1996, 32, 255.  

    13. [13]

      (13) Wu, D. S.; Lei, J.; Zheng, B. S.; Tang, X. Y.; Wang, M. S.; Hu, J.; Li, S. H.; Wang, B. B.; Finkelman, R. B. Chin. J. Geochem. 2011, 30, 248.  

    14. [14]

      (14) Burchill, P.; Welch, L.S. Fuel 1989, 68, 100.  

    15. [15]

      (15) Boudou, J.; Schimmelmann, A.; Ader, M.; Mastalerz, M.; Sebilo, M.; Gengembre, L. Geochim Cosmochim Ac 2008, 72, 1199.  

    16. [16]

      (16) Valentim, B.; Guedes, A.; Rodrigues, S.; Flores, D. International Journal of Coal Geology 2011, 86, 291.  

    17. [17]

      (17) Perdew, J. P. ; Levy, M. Phys. Rev. B 1997, 56, 16021.  

    18. [18]

      (18) Sun, W. J.; Chu, W.; Yu, L. J.; Jiang, C. F. Chin. J Chem. Phys. 2010, 23, 175.  

    19. [19]

      (19) Zhang, X.; Chu, W.; Chen, J. J.; Dai, X. Y. Acta Phys. -Chim. Sin. 2009, 23, 451. [张旭, 储伟, 陈建钧, 戴晓雁. 物理化学学报, 2009, 23, 451.]

    20. [20]

      (20) Wang, Z. Q.; Sun, W. J.; Chu, W.; Yu, L. J. Acta Phys. -Chim.Sin. 2011, 27, 322. [王志强, 孙文晶, 储伟, 余良军. 物理化学学报, 2011, 27, 322.]

    21. [21]

      (21) Delley, B. J. Chem. Phys. 1990, 92, 508.

    22. [22]

      (22) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A. ; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.  

    23. [23]

      (23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.  

    24. [24]

      (24) Vogiatzis, K. D.; Mavrandonakis, A.; Klopper, W.; Froudakis, G. E. ChemPhysChem 2009, 10, 374.  

    25. [25]

      (25) Thierfelder, C.; Witte, M.; Blankenburg, S.; Rauls, E.; Schmidt, W. G. Surf. Sci. 2011, 605, 746.  

    26. [26]

      (26) Mullins, O. C.; Kirtley, S. M.; Elp, J. V.; Cramer, S. P. Applied Spectroscopy 1993, 47, 1268.  

    27. [27]

      (27) Deng, D.; Pan, X.; Yu, L. ; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X.; Xue, Q.; Sun, G.; Bao, X. Chem. Mater. 2011, 23, 1188.  

  • 加载中
    1. [1]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    14. [14]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(824)
  • Abstract views(3555)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return