Citation:
LI Lan, HU Geng-Shen, LU Ji-Qing, LUO Meng-Fei. Review of Oxygen Vacancies in CeO2-doped Solid Solutions as Characterized by Raman Spectroscopy[J]. Acta Physico-Chimica Sinica,
;2012, 28(05): 1012-1020.
doi:
10.3866/PKU.WHXB201203052
-
This review summarizes the current status of the evolution and observation of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy. Three Raman peaks at 465, 560, and 600 cm-1 are ascribed to the F2g symmetrical stretching vibration mode of CeO2 in a fluorite structure, oxygen vacancies, and a MO8-type complex, respectively. The presence of oxygen vacancies was related to the ionic valence states of the dopant, while the MO8-type complex was associated with the ionic radii of the dopant. The oxygen vacancy concentration correlated with the sample absorbance and the surface enrichment of oxygen vacancies. The in situ Raman spectroscopic investigations show that the atmospheric composition and temperature had a large influence on the absorbance of the samples, which in turn alters the detection depth of the Raman laser and the observed oxygen vacancy concentration.
-
-
-
[1]
(1) Reddy, B. M.; Bharali, P.; Saikia, P.; Ataulah, K.; Loridant, S.; Muhler, M.; Grünert,W. J. Phys. Chem. C 2007, 111, 1878.
-
[2]
(2) Wang, X. Q.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández-García, M. J. Phys. Chem. B 2006, 110, 428.
-
[3]
(3) Park, S.; Vohs, J. M.; rte, R. J. Nature 2000, 404, 265.
-
[4]
(4) rte, R. J.; Vohs, J. M.; Mclntosch, S. Solid State Ionics 2004, 175, 1.
- [5]
-
[6]
(6) Liu, L.; Tang, C. Q. J. Power Sources (China) 2001, 25, 428.
- [7]
- [8]
-
[9]
(9) Jin, X. L.; Meng, M. Chinese Chemical Industry and Engineering 2007, 27, 345. [金向亮, 孟明. 化学工业与工程, 2007, 27, 345.]
-
[10]
(10) Song, Z. X.; Liu,W.; Nishiguchi. H.; Takami, A.; Nagaoka, K.; Takita, Y. Appl. Catal. A: Gen. 2007, 329, 86.
-
[11]
(11) McBride, J. R.; Hass, K. C.; Poindexter, B. D. ;Weber,W. H. J. Appl. Phys. 1994, 76, 2435.
-
[12]
(12) He, H.; Dai, H. X.; Au, C. T. Catal. Today 2004, 90, 245.
-
[13]
(13) Xiao, G. L.; Li, S.; Li, H.; Chen, L. Q. Microporous and Mesoporous Mater. 2009, 120, 426.
-
[14]
(14) Hennings, U.; Reimert, R. Appl. Catal. A 2007, 325, 41.
- [15]
-
[16]
(16) Daturi, M.; Finocchio, E.; Binet, C.; Lavalley, J. C.; Fally, F.; Perrichon, V.; Vidal, H.; Hickey, N.; Kaspar, J. J. Phys. Chem. B 2000, 104, 9186.
-
[17]
(17) Kozlov, A. I.; Kim, D. H.; Yezerets, A.; Andersen, P.; Kung, H. H.; Kung, M.C. J. Catal. 2002, 209, 417.
-
[18]
(18) Thangadurai, V.; Kopp, P. J. Power Sources 2007, 168, 178.
-
[19]
(19) Etsell, T. H.; Flengas, S. N. Chem. Rev. 1970, 70, 339.
-
[20]
(20) Li, S. P.; Lu, J. Q.; Fang, P.; Luo, M. F. J. Power Sources 2009, 193, 93.
-
[21]
(21) Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura S. Chem. Mater. 2004, 16, 2317.
-
[22]
(22) Ganduglia-Pirovano, M. V.; Hofmann, A.; Sauer, J. Surf. Sci. Rep. 2007, 62, 219.
-
[23]
(23) Popovi?, Z. V.; Dohcevi?-Mitrovi?, Z.; Konstantinovi?, M. J.; S?epanovi?, M. J. Raman Spectrosc. 2007, 38, 750.
-
[24]
(24) Thomas, J. M.; Thomas,W. J. Principles and Practice of Heterogeneous Catalysis; New York:Wiley-VCH, 1997; pp 257-275.
- [25]
-
[26]
(26) Banares, M. A.;Wachs, I. E. J. Raman. Spectrosc. 2002, 33, 359.
- [27]
-
[28]
(28) Li, C.; Li, M. J. J. Mol. Catal.(China) 2003, 17, 213. [李灿, 李美俊. 分子催化, 2003, 17, 213.]
-
[29]
(29) Xiong, G.; Feng, Z.; Li, J.; Yang, Q. H.; Ying, P. L.; Xin, Q.; Li, C. J. Phys. Chem. B 2000, 104, 3581.
-
[30]
(30) Xiong, G.; Yu, Y.; Feng, Z. C.; Xin, Q.; Xiao, F. S.; Li, C. Microporous Mesoporous Mater. 2001, 42, 317.
-
[31]
(31) Wang, L.; Hall,W. K. J. Catal. 1983, 82, 177.
-
[32]
(32) Schrader, G. L.; Cheng, C. P. J. Catal. 1983, 80, 369.
-
[33]
(33) Vuurman, M. A.;Wachs, I. E. J. Phys. Chem. 1992, 96, 5008.
-
[34]
(34) Weckhuysen, B. M.;Wachs, I . E. J. Phys. Chem. B 1997, 101, 2793.
-
[35]
(35) Weckhuysen, B. M.;Wachs, I. E. J. Phys. Chem. 1996, 100, 14437.
-
[36]
(36) Li, M. J.; Feng, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chin. J. Catal. 2003, 24, 861. [李美俊, 冯兆池, 张静, 应品良, 辛勤, 李灿. 催化学报, 2003, 24, 861.]
-
[37]
(37) Li, M. J.; Feng, Z. C.; Xiong, G.; Ying, P. l.; Xin, Q.; Li, C. J. Phys. Chem. B 2001, 105, 8107.
-
[38]
(38) Weng,W. Z.;Wan, H. L.; Li, M. J.; Cao, Z. X. Angew. Chem. Int. Edit. 2004, 43, 975.
-
[39]
(39) Fan, F. T. ; Feng, Z. C. ; Li, G. N.; Sun, K. J.; Ying, P. L.; Li, C. Chem. Eur. J. 2008, 14, 5125.
-
[40]
(40) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.
-
[41]
(41) Pu, Z. Y.; Lu, J. Q.; Luo, M. F.; Xie, Y. L. J. Phys. Chem. C 2007, 111, 18695.
-
[42]
(42) Guo, M.; Lu, J. Q.; Bi, Q. Y.; Luo, M. F. Chem.Phys.Chem. 2010, 11, 1693.
-
[43]
(43) Kobayashi, T.;Wang, S.; Dokiya, M.; Tagawa, H.; Hashimotom, T. Solid State Ionics 1999, 126, 349.
-
[44]
(44) Shuk, P.; Greenblatt, M. Solid State Ionics 1999, 116, 217.
-
[45]
(45) Luo, M. F.; Lu, G. L.; Zheng, X. M.; Zhong, Y. J.;Wu, T. H. J. Mater. Sci. Lett. 2000, 19, 1351.
-
[46]
(46) Keramidas, V. G.; White,W. B. J. Chem. Phys. 1973, 59, 1561.
-
[47]
(47) Nakajima, A.; Yoshihara, A.; Ishigame, M. Phys. Review B, 1994, 50, 13297.
-
[48]
(48) Taniguchi, T.;Watanabe, T.; Sugiyama, N.; Subramani, A. K.; Wagata, H.; Matsushita, N.; Yoshimura, M. J. Phys. Chem. C 2009, 113, 19789.
-
[49]
(49) Li, L.; Chen, F.; Lu, J. Q.; Luo, M. F.; J. Phys. Chem. A 2011, 115, 7972.
-
[50]
(50) Wu, Z. L.; Li, M. J.; Howe, J.; Meyer, H. M. III; Overbury, S. H. Langmuir 2010, 26, 16595.
-
[51]
(51) Lee, Y.; He, G.; Akey, A. J; Si, R.; Flytzani-Stephanopoulos, M.; Herman, I. P. J. Am. Chem. Soc. 2011, 133, 12952.
-
[52]
(52) Luo, M. F.; Yan, Z. L.; Jin, L. Y.; He, M. J. Phys. Chem. B 2006, 110, 13068.
-
[53]
(53) Ou, D. R.; Mori, T.; Ye, F.; Kobayashi, T. Appl. Phys. Lett. 2006, 89, 171911-1.
-
[54]
(54) Li, L.; Guo, M.; Pu, Z. Y.; Lu, J. Q.; Luo, M. F. Chin. J. Inorg. Chem. 2011, 27, 840. [李岚, 郭明, 普志英, 鲁继青, 罗孟飞. 无机化学学报, 2011, 27, 840.]
-
[55]
(55) Guo, M.; Lu, J. Q.;Wu, Y. N.;Wang, Y. J.; Luo, M. F.; Langmuir 2011, 27, 3872.
-
[56]
(56) Ye, F.; Mori, T.; Ou, D. R.; Cormack, A. N. Solid State Ionics 2009, 180, 1127.
-
[57]
(57) Guzman, J.; Carrettin, S.; Fierro- nzalez, J. C.; Hao, Y.; Gates, B. C.; Corma, A. Angew. Chem. Int. Edit. 2005, 44, 4778.
- [58]
-
[59]
(59) Shapovalov, V.; Carrettin, S.; Corma, A. J. Am. Chem. Soc. 2005, 127, 3286.
-
[60]
(60) Yan, Z. L.; Lin, X.; Luo, J. H.; Xie, G. Q.; Luo, M. F. Chin. J. Inorg. Mater. 2005, 20, 653. [闫宗兰, 林霞, 罗建海, 谢冠群, 罗孟飞. 无机材料学报, 2005, 20, 653.]
-
[61]
(61) Pu, Z. Y.; Liu, X. S.; Jia, A. P.; Xie, Y. L.; Lu, J. Q.; Luo, M. F. J. Phys. Chem. C 2008, 112, 15045.
-
[62]
(62) Li, H. F.; Zhang, N.; Chen, P.; Luo, M. F.; Lu, J. Q. Appl. Catal. B 2011, 110, 279.
-
[63]
(63) Meng, L.; Jia, A. P.; Lu, J. Q.; Luo, L. F.; Huang,W. X.; Luo, M. F. J. Phys. Chem. C 2011, 115, 19789.
-
[1]
-
-
-
[1]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[4]
Yufan ZHAO , Jinglin YOU , Shixiang WANG , Guopeng LIU , Xiang XIA , Yingfang XIE , Meiqin SHENG , Feiyan XU , Kai TANG , Liming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063
-
[5]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[6]
Jingyi Chen , Fu Liu , Tiejun Zhu , Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111
-
[7]
Wei Peng , Baoying Wen , Huamin Li , Yiru Wang , Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062
-
[8]
Zhaoyue Lü , Zhehao Chen , Yi Ni , Duanbin Luo , Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047
-
[9]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[10]
Ruiqin Feng , Ye Fan , Yun Fang , Yongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020
-
[11]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[12]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[13]
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
-
[14]
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
-
[15]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[16]
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
-
[17]
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
-
[18]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
-
[19]
Jingyi Xie , Qianxi Lü , Weizhen Qiao , Chenyu Bu , Yusheng Zhang , Xuejun Zhai , Renqing Lü , Yongming Chai , Bin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021
-
[20]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[1]
Metrics
- PDF Downloads(1644)
- Abstract views(2880)
- HTML views(13)