Citation: YUAN Zheng, CUI Yong-Li, SHEN Ming-Fang, QIANG Ying-Huai, ZHUANG Quan-Chao. Preparation and Electrochemical Performance of LiTi2(PO4)3/C Composite Cathode for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1169-1176. doi: 10.3866/PKU.WHXB201203012 shu

Preparation and Electrochemical Performance of LiTi2(PO4)3/C Composite Cathode for Lithium Ion Batteries

  • Received Date: 18 November 2011
    Available Online: 1 March 2012

    Fund Project: 中央高校基本科研业务费专项资金(2010LKHX03, 2010QNB04, 2010QNB05) (2010LKHX03, 2010QNB04, 2010QNB05)中国矿业大学培育学科创新能力提升基金(2011XK07)资助项目 (2011XK07)

  • LiTi2(PO4)3/C composite with a Na+ superionic conductor (NASICON)-type structure was prepared by a sol-gel method. The LiTi2(PO4)3/C composite had a od NASICON structure and od electrochemical properties as revealed by X-ray diffraction (XRD), scanning electron microscopy (SEM), charging/discharging tests, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The first discharge capacity was 144 mAh·g-1. The EIS results indicated that there appeared semicircles respectively representing the solid electrolyte interface (SEI) film as well as the contact resistance, charge transfer resistance, and phase transformation resistance in the initial lithiation process of LiTi2(PO4)3/C composite electrode. The chemical diffusion coefficients of intercalation and de-intercalation of Li+ in the LiTi2(PO4)3 cathode material were calculated to be 2.40×10-5 and 1.07×10-5 cm2·s-1, respectively.
  • 加载中
    1. [1]

      (1) Wakihara, M. Mater. Sci. Eng. 2001, 33, 109.  

    2. [2]

      (2) Padhi, A.K.; Nanjundaswamy, K.S.; odenough, J.B. J . Electrochem . Soc. 1997, 144 (4), 1188.

    3. [3]

      (3) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J . Electrochem . Soc. 1997, 144 (5), 1609.

    4. [4]

      (4) Nanjundaswamy, K. S.; Padhi, A. K.; odenough, J. B.; Okada, S.; Ohtsuka, H.; Arai, H.; Yamaki, J. Solid State Ionics 1996, 92 (1-2), 1.

    5. [5]

      (5) Yamada, A.; Chung, S.C.; Hinokuma, K. J . Electrochem . Soc. 2001, 148 (3), A224.

    6. [6]

      (6) Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148 (3-4), 283.

    7. [7]

      (7) Dahn, J.R.; Fuller, E.W.; Obrovac, M.; Sacken, U. V. Solid State Ionics 1994, 69 (3-4), 265.

    8. [8]

      (8) Patoux, S.; Wurm, C.; Morcrette, M.; Rousse, G.; Masquelier, C. J . Power Sources 2003, 119-121, 278.

    9. [9]

      (9) Sato, M.; Ohkawa, H.; Yoshida, K.; Saito, M.; Uematsu, K.; Toda, K. Solid State Ionics 2000, 135 (1-4), 137.

    10. [10]

      (10) Saidi, M.Y.; Barker, J.; Huang, H.; Swoyer, J.L.; Adamson, G. J . Power Sources 2003, 119-121, 266.

    11. [11]

      (11) Wang, G. X.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. J . Power Sources 2003, 124, 231.  

    12. [12]

      (12) Delmas, C.; Nadiri, A.; Soubeyroux, J. L. Solid State Ionics 1988, 28-30, 419.

    13. [13]

      (13) Torardi, C.C.; Prince, E. Mater. Res. Bull. 1986, 21 (6), 719.

    14. [14]

      (14) Manthiram, A.; odenough, J. B. J. Solid State Chem. 1987, 71, 349.  

    15. [15]

      (15) Wang, H, B. The Research of Electrochemical Properties of Aqueous Lithium-ion Batteries and Proton Electrolyte for Intermediate Temperature Fuel Cell. Ph. D. Dissertation, Central South University, Changsha, 2008. [王海波.水溶液锂离子电池电化学性能和中温燃料电池质子电解质的研究[D]. 长沙: 中南大学, 2008.]  

    16. [16]

      (16) Christopher, M.; Burba.; Roger, F. Solid State Ionics 2006, 177, 1489.  

    17. [17]

      (17) Barsoukov, E.; Kim, D. H.; Lee, H. S.; Lee, H.; Yakovleva M.; Gao, Y.; Engel J. F. Solid State Ionics 2003, 161, 19.  

    18. [18]

      (18) Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.  

    19. [19]

      (19) Barsoukov, E.; Kim, J. H..; Kim, D. H..; Hwang, K. S.; Yoon, C. O.; Lee, H. J . New Mater . Electrochem . Syst. 2000, 3, 301.

    20. [20]

      (20) Fan, X. Y.; Zhuang, Q. C.; Wei, G. Z. Acta Phys -Chim . Sin. 2009, 25 (4), 611. [樊小勇, 庄全超, 魏国祯, 物理化学学报, 2009, 25 (4), 611.]

    21. [21]

      (21) Fan, X. Y.; Zhuang, Q. C.; Wei, G. Z.; Huang, L.; Dong, Q. F.; Sun, S. G. J . Appl . Electrochem. 2009, 39, 1323.  

    22. [22]

      (22) Fan, X. Y.; Zhuang, Q. C.; Wei, G. Z.; Ke, F. S.; Huang, L.; Dong, Q. F.; Sun, S. G. Acta Chim . Sin. 2009, 67 (14), 1547. [樊小勇, 庄全超, 魏国祯, 柯福生, 黄令, 董全峰, 孙世刚, 化学学报, 2009, 67 (14), 1547.]

    23. [23]

      (23) Levi, M. D.; Gamosky, K.; Aurbach, D. Electrochim . Acta 2000, 45 (11), 1781.

    24. [24]

      (24) Xu, S. D.; Zhuang, Q. C.; Tian, L. L.; Qin, Y. P.; Fang, L.; Sun S. G. J . Phys . Chem . C 2011, 115: 9210.  

  • 加载中
    1. [1]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    3. [3]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    4. [4]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    5. [5]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    17. [17]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    20. [20]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(1036)
  • Abstract views(2970)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return