Citation: DU Ai, ZHOU Bin, GUI Jia-Yin, LIU Guang-Wu, LI Yu-Nong, WU Guang-Ming, SHEN Jun, ZHANG Zhi-Hua. Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1189-1196. doi: 10.3866/PKU.WHXB201202292 shu

Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture

  • Received Date: 21 November 2011
    Available Online: 29 February 2012

    Fund Project: 国家自然科学基金(51102184, 51172163) (51102184, 51172163) 国家高技术研究发展(863)计划, 国家科技支撑计划(2009BAC62B02) (863)计划, 国家科技支撑计划(2009BAC62B02)同济大学青年优秀人才培养行动计划(2010KJ068) (2010KJ068)教育部博士点基金(20090072110047, 20100072110054)资助项目 (20090072110047, 20100072110054)

  • Aerogels with densities in the range 40-175 mg·cm-3 were prepared using a tetraethyl orthosilicate (TEOS) ethanol-water solution as the precursor and hydrofluoric acid as the catalyst via a sol-gel process and CO2 supercritical-fluid drying. The density-gradient aerogels were prepared using layer-by-layer gelation, sol co-gelation, and gradient-sol co-gelation methods and their gradient properties were studied systematically. The results show that aerogels with different densities all have a threedimensional skeleton consisting of spherical particles of diameter about 40-90 nm. The lower the density is, the looser the skeleton and pore-size distributions are, and the larger the peak value of the pore size is. Gradient aerogels prepared via different methods exhibited graded, approximately gradient, or gradient distributions. Dynamic mechanical analysis indicates that the Young's moduli of the aerogels at -100 and 25 °C (changed from 4.6×105 to 1.9×105 Pa and from 5.0×105 to 2.1×105 Pa, respectively) tend to decrease with decreasing density. Thermal constants analysis shows that as the densities of the aerogels decrease, the thermal diffusion coefficients increase and the specific heat capacities decrease, but the thermal conductivities do not change monotonically.
  • 加载中
    1. [1]

      (1) Fricke, J.; Emmerling, A. J. Am. Ceram. Soc. 1992, 75, 2027.  

    2. [2]

      (2) Du, A.; Zhou, B.; Shen, J.; Gui, J. Y.; Liu, C. Z.; Fan, G. L.; Zhang, Z. H. Atom. Energy Sci. Technol. 2010, 44, 1006. [杜艾, 周斌, 沈军, 归佳寅, 刘春泽, 范广乐, 张志华. 原子能科学技术, 2010, 44, 1006.]

    3. [3]

      (3) Fricke, J.; Emmerling, A. Struct. Bonding 1992, 77, 37.  

    4. [4]

      (4) Hüsing, N.; Schubert, U. Angew. Chem. Int. Edit. 1998, 37, 22.  

    5. [5]

      (5) Xu, Z. J.; Gan, L. H.; Pang, Y. C.; Chen, L.W. Acta Phys. -Chim. Sin. 2005, 21, 221. [徐子颉, 甘礼华, 庞颖聪, 陈龙武. 物理化学学报, 2005, 21, 221.]

    6. [6]

      (6) Guo, X. Z.; Yan, L. Q.; Yang, H.; Li, J.; Li, C. Y.; Cai, X. B. Acta Phys. -Chim. Sin. 2011, 27, 2478. [郭兴忠, 颜立清, 杨辉, 李建, 李超宇, 蔡晓波. 物理化学学报, 2011, 27, 2478.]

    7. [7]

      (7) Du, A.; Zhou, B.; Zhong, Y. H.; Zhu, X. R.; Gao, G. H.;Wu, G. M.; Zhang, Z. H.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 225.  

    8. [8]

      (8) Du, A.; Zhou, B.; Shen, J.; Xiao, S. F.; Zhang, Z. H.; Liu, C. Z.; Zhang, M. X. J. Non-Cryst. Solids 2009, 355, 175.  

    9. [9]

      (9) Ren, H. B.; Zhang, L.; Shang, C.W.;Wang, X.; Bi, Y. T. J. Sol-Gel Sci. Technol. 2010, 53, 307.  

    10. [10]

      (10) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook, 1st ed.; Springer: New York, 2011; pp 3-18.

    11. [11]

      (11) Wagh, P. B.; Begag, R.; Pajonk, G. M.; Rao, A. V.; Haranath, D. Mater. Chem. Phys. 1999, 57, 214.  

    12. [12]

      (12) Jones, S. M. J. Sol-Gel Sci. Technol. 2006, 40, 351.  

    13. [13]

      (13) Gerlach, R.; Kraus, O.; Fricke, J.; Eccardt, P. C.; Kroemer, N.; Ma ri, V. J. Non-Cryst. Solids 1992, 145, 227.  

    14. [14]

      (14) Tsou, P. J. Non-Cryst. Solids 1995, 186, 415.  

    15. [15]

      (15) Tsou, P.; Brownlee, D. E.; Sandford, S. A.; Hörz, F.; Zolensky, M. E. J. Geophys. Res. 2003, 108, SRD3-1.

    16. [16]

      (16) Bajt, S.; Sandford, S. A.; Flynn, G. J.; Matrajt, G.; Snead, C. J.; Westphal, A. J.; Bradley, J. P. Meteorit. Planet. Sci. 2009, 44, 471.  

    17. [17]

      (17) Marty, B.; Palma, R. L.; Pepin, R. O.; Zimmermann, L.; Schlutter, D. J.; Burnard, P. G.;Westphal, A. J.; Snead, C. J.; Bajt, S.; Becker, R. H.; Simones, J. E. Science 2008, 319, 75.  

    18. [18]

      (18) Special issue: Stardust; Science 2006, 314, 1641-1824.  

    19. [19]

      (19) Gui, J. Y.; Zhou, B.; Zhong, Y. H.; Du, A.; Shen, J. J. Sol-Gel Sci. Technol. 2011, 58, 470.  

    20. [20]

      (20) Du, A.; Zhou, B.; Zhong, Y. H.; Li, Y. N.; Gui, J. Y.; Shen, Y.; Shen, J.;Wu, G. M. Acta Aeronaut. Astronaut. Sin. 2011, 32, 961. [杜艾, 周斌, 钟艳红, 李宇农, 归佳寅, 沈洋, 沈军, 吴广明. 航空学报, 2011, 32, 961.]

    21. [21]

      (21) Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties, 2nd ed.; Tsinghua University Press: Beijing, 2002; pp 376-395; translated by Liu, P. S. [Gibson, L. J., Ashby, M. F. 多孔固体: 结构与性能. 刘培生, 译. 北京: 清华大学出版社, 2002: 376-395.]

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    4. [4]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    7. [7]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    8. [8]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    9. [9]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    10. [10]

      Fuping Tian Yunshan Bai Wanchun Zhu Yufeng Li Yongmei Liu Shu'e Song Hong Yuan Zhongyun Wu Li Wang Xiaokui Wang Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Thermal Properties. University Chemistry, 2025, 40(5): 157-164. doi: 10.12461/PKU.DXHX202503054

    11. [11]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    14. [14]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    15. [15]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    16. [16]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    19. [19]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    20. [20]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

Metrics
  • PDF Downloads(779)
  • Abstract views(3185)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return