Citation: YE Qing, ZHANG Yu, LI Ming, SHI Yao. Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1223-1229. doi: 10.3866/PKU.WHXB201202234 shu

Adsorption of Low Concentration CO2 by Modified Carbon Nanotubes under Ambient Temperature

  • Received Date: 18 October 2011
    Available Online: 23 February 2012

    Fund Project: 国家自然科学基金(20976159)资助项目 (20976159)

  • Solid amine adsorbents for low concentration CO2 removal were developed using carbon nanotubes (CNTs) impregnated with tetraethylenepentamine (TEPA) and triethylenetetramine (TETA). The adsorbents were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FITR), N2 adsorption/desorption, elemental analysis and thermogravimetric analysis (TGA). After impregnation, the shapes, fundamental channels and pore structures of the adsorbents were unchanged. However, the surface area and pore volume decreased. The adsorption behavior toward low concentration CO2 was investigated in a fixed-bed column. The results indicated that the adsorption capacity was enhanced substantially by modification. The CO2 adsorption capacity of CNTs-TEPA was higher than that of CNTs-TETA with the same amount of amine loading. The adsorption capacity increased steadily from 126.7 to 139.3 mg·g-1 for CNTs-TEPA and from 101.2 to 110.4 mg·g-1 for CNTs-TETA as the temperature increased from 20 to 30 ℃. The adsorption capacity of the raw CNTs experienced a modest increase, but began to decrease gradually with further temperature increases. Suyadal and Yasyerli deactivation models were applied to investigate the experimental breakthrough curves of raw and modified CNTs. It was concluded that the Yasyerli deactivation model is more appropriate to analyze the breakthrough curves of CO2 adsorption on solid amine adsorbents.
  • 加载中
    1. [1]

      (1) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  

    2. [2]

      (2) Serna-Guerrero, R.; Sayari, A. Chem. Eng. J. 2010, 161, 182.  

    3. [3]

      (3) Zhang, P.; Shi, Y.;Wei, J.; Zhao,W.; Ye, Q. J. Environ. Sci. 2008, 20, 39.  

    4. [4]

      (4) Shi, J. J.; Liu, Y. M.; Chen, J.; Zhang, Y.; Shi, Y. Acta Phys.-Chim.Sin. 2010, 26 (11), 3023. [史晶金, 刘亚敏, 陈杰, 张瑜, 施耀. 物理化学学报, 2010, 26 (11), 3023.]

    5. [5]

      (5) Moloney, P.; Huffman, C.; relik, O.; Nikolaev, P.; Arepalli, S.; Allada, R.; Springer, M.; Yowell, L. Advanced Life Support for Space Exploration: Air Revitalization Using Amine Coated SingleWall Carbon Nanotubes. In Materials for Space Applications, Symposium on Materials for Space Applications, Boston, USA, Nov. 29-Dec. 03.2004; Chipara, M.; Edwards, D. L.; Benson, R.S.; Phillips, S., Eds.; Materials Research Society: Warrendale, 2005; 59.

    6. [6]

      (6) Feron, P.; Jacobs, P.; Paul, P.; Savage, C.;Witt, J. Integrated CO2 and Humidity Control by Membrane Gas Absorption. In ESA Special Publications, Sixth European Symposium on Space Environmental Control Systems, Noordwijk, Netherlands, 1997, May 20-22, 1997; Guyenne, T.D., Eds.; European Space Agency: Paris, 1997; 761.

    7. [7]

      (7) Hwang, H. T.; Harale, A.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. J.Membr.Sci. 2008, 315, 116.  

    8. [8]

      (8) Oyenekan, B. A.; Rochelle, G. T. AIChE J. 2007, 53, 3144.  

    9. [9]

      (9) Sridharab, S.; Smithab, B.;Aminabhavia,T. M. Sep.Purif. Rev. 2007, 36, 113.  

    10. [10]

      (10) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2009, 49, 359.

    11. [11]

      (11) Wang, X.; Schwartz, V.; Clark, J. C.; Ma, X.; Overbury, S. H.; Xu, X.; Song, C. J. Phys. Chem.C 2009, 113, 7260.  

    12. [12]

      (12) Satyapal, S.; Filburn, T.; Trela, J.; Strange, J. Energy Fuels 2001, 15, 250.  

    13. [13]

      (13) Somy, A.; Mehrnia, M. R.; Amrei, H. D.; Ghanizadeh, A.; Safari, M. Int. J. Greenh.Gas Con. 2009, 3, 249.  

    14. [14]

      (14) Hsu, S.; Lu, C. Sep. Sci. Technol. 2007, 42, 2751.  

    15. [15]

      (15) Wei, J.W.; Shi, J.J.; Pan, H.; Zhao,W.; Ye, Q.; Shi, Y. Microporous Mesoporous Mat. 2008, 116, 394.  

    16. [16]

      (16) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn, P. Microporous Mesoporous Mat. 2008, 116, 358.  

    17. [17]

      (17) Su, F.; Lu, C.; Cnen,W.; Bai, H.; Hwang, J. F. Sci. Total Environ. 2009, 407, 3017.  

    18. [18]

      (18) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys.-Chim. Sin. 2007, 23 (6), 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23 (6), 801. ]

    19. [19]

      (19) Mello, M. R.; Phanon, D.; Silveira, G. Q.; Llewellyn, P. L.; Ronconi, C. M. Microporous Mesoporous Mat. 2011, 143, 174.  

    20. [20]

      (20) Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Ind. Eng. Chem. Res. 2003, 42, 2427.  

    21. [21]

      (21) Zhu, Z. Z.;Wang, Z.; Li, H. L. Appl. Surf. Sci. 2008, 254, 2934.  

    22. [22]

      (22) Krishen, K. Acta Astronaut. 2008, 63, 324.  

    23. [23]

      (23) Smart, S.; Cassady, A.; Lu, G.; Martin, D. Carbon 2006, 44, 1034.  

    24. [24]

      (24) mmans, H. H.; Alldredge, J.W.; Tashiro, H .; Park, J.; Magnuson, J.; Rinzler, A. G. J. Appl.Phys. 2000, 88, 2509.  

    25. [25]

      (25) Chang, A. C. C.; Chuang, S. S. C.; Gray, M. M.; Soong, Y. Energy Fuels 2003, 17, 468.  

    26. [26]

      (26) Serna-Guerrero, R.; Da'na, E.; Sayari, A. Ind. Eng. Chem. Res. 2008, 47, 9406.  

    27. [27]

      (27) Danckwerts, P. V. Chem. Eng. Sci. 1979, 34, 443.  

    28. [28]

      (28) Versteeg, G. F.; van Dijck, L. A. J.; van Swaaij,W. P. M. Chem. Eng. Com. 1996, 144, 113.  

    29. [29]

      (29) Suyadal, Y.; Erol, M.; Oguz, H. Ind. Eng. Chem. Res. 2000, 39, 724.  

    30. [30]

      (30) Yasyerli, S.; Dogu, G.; Ar, I.; Dogu, T. Ind. Eng. Chem. Res. 2001, 40, 5206.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    3. [3]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    10. [10]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    14. [14]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    15. [15]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    16. [16]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    17. [17]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(1137)
  • Abstract views(2583)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return