Citation: ZHANG Ren-Kai, SUN Zhe, XIE Huan-Huan, LIANG Mao, XUE Song. New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1139-1145. doi: 10.3866/PKU.WHXB201202233 shu

New Comb-Like Copolymer for Quasi-Solid Electrolyte Based Dye-Sensitized Solar Cells and Its Effects on Electron Recombination

  • Received Date: 21 November 2011
    Available Online: 23 February 2012

    Fund Project: 国家自然科学基金(21003096, 21103123)资助项目 (21003096, 21103123)

  • A comb-like copolymer based on N-propylvinylimidazolium iodide (VImI) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) was synthesized. The VImI/PEGMA copolymer was used to prepare quasi-solid electrolytes. The charge transport and interfacial charge transfer of the dye-sensitized solar cells (DSSCs) based on the quasi-solid electrolytes were investigated using photocurrent density-voltage (J-V) curves, ionic conductivities, and impedance spectra. It was found that the copolymer plays an active role in decreasing the electron recombination at TiO2/electrolyte interface and increases the conduction band edge of TiO2. The photovoltaic characteristics of the DSSCs are therefore not determined entirely by the conductivity of the quasi-solid electrolyte. Based on the dependence of the open-circuit voltage on the VImI/PEGMA molar ratio, the decrease of recombination is primarily ascribed to the contribution of VImI segments. In addition, open-circuit voltage decay (OCVD) and photocurrent transient results indicate that the introduction of the copolymer not only extends the electron lifetime but also tunes the energy distribution of the localized electrons. When the VImI/PEGMA molar ratio reaches 5.0 and the mass fraction of copolymer in the quasi-solid electrolyte is 50%, the DSSC yields an energy conversion efficiency of 4.10% under an illumination intensity of 100 mW·cm-2.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  

    3. [3]

      (3) Ardo, A.; Meyer, G. J. Chem. Soc. Rev. 2009, 38, 115.  

    4. [4]

      (4) Yella, A.; Lee, H.W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E.W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.  

    5. [5]

      (5) Han, L. Y.; Fukui, Y.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Koide, N.; Yamanaka, R.; Shimizu, M. Appl. Phys. Lett. 2009, 94, 013305.  

    6. [6]

      (6) Nogueira, A. F.; Lon , C.; De Paoli, M. A. Coord. Chem. Rev. 2004, 248, 1455.  

    7. [7]

      (7) Haque, S. A.; Park, T.; Xu, C. G.; Koops, S.; Schulte, N.; Potter, R. J.; Holmes, A. B.; Durrant, J. R. Adv. Funct. Mater. 2004, 14, 435.  

    8. [8]

      (8) Wu, J. H.; Lan, Z.; Lin, J. M.; Huang, M. L.; Hao, S. C.; Sato, T.; Yin, S. Adv. Mater. 2007, 19, 4006.  

    9. [9]

      (9) Kang, M. S.; Ahn, K. S.; Lee, J.W. J. Power Sources 2008, 180, 896.  

    10. [10]

      (10) Saikia, D.; Han, C. C.; Chen-Yang, Y.W. J. Power Sources 2008, 185, 570.  

    11. [11]

      (11) Yang, Y.; Zhang, J.; Zhou, C. H.;Wu, S. J.; Xu, S.; Liu,W.; Han, H.W.; Chen, B. L.; Zhao, X. Z. J. Phys. Chem. B 2008, 112, 6594.  

    12. [12]

      (12) Lee, J. Y.; Bhattacharya, B.; Kim, D.W.; Park, J. K. J. Phys. Chem. C 2008, 112, 12576.  

    13. [13]

      (13) Xiang,W. C.; Zhou, S. H.; Yin, X.; Xiao, X. R.; Lin, Y.; Fang, S. B. Polym. Adv. Technol. 2009, 20, 519.  

    14. [14]

      (14) Kim, J. Y.; Kim, T. H.; Kim, D. Y.; Park, N. G.; Ahn, K. D. J. Power Sources 2008, 175, 692.  

    15. [15]

      (15) Wang, M.; Lin, Y.; Zhou, X.W.; Xiao, X. R.; Yang, L.; Feng, S. J.; Li, X. P. Mater. Chem. Phys. 2008, 107, 61.  

    16. [16]

      (16) Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Thin Solid Films 2008, 516, 4613.  

    17. [17]

      (17) Freitas, F. S.; De Freitas, J. N.; Bruno, I. Ito.; De Paoli, M. A.; Nogueira, A. F. ACS Appl. Mater. Inter. 2009, 1, 2870.  

    18. [18]

      (18) Benedetti, J. E.; ncalves, A. D.; Formiga, A. L .B.; De Paoli, M. A.; Li, X.; Durrant, J. R.; Nogueira, A. F. J. Power Sources 2010, 195, 1246.  

    19. [19]

      (19) Wang, H. X.; Peter, L. M. J. Phys. Chem. C 2009, 113, 18125.  

    20. [20]

      (20) Patel, R.; Seo, J. A.; Koh, J. H.; Kim, J. H.; Kang, Y. S. J. Photochem. Photobio. A: Chem. 2011, 217, 169.  

    21. [21]

      (21) Yang,Y.; Hu, H.; Zhou, C. H.; Xu, S.; Sebo, B.; Zhao, X. Z. J. Power Sources 2011, 196, 2410.  

    22. [22]

      (22) Lin, X.;Wu, M. X.; An, J.; Miao, Q. Q.; Qin, D.; Ma, T. L. Acta Phys. -Chim. Sin. 2011, 27, 2577. [林逍, 武明星, 安江, 苗青青, 覃达, 马廷丽. 物理化学学报, 2011, 27, 2577.]

    23. [23]

      (23) Fabregat-Santia , F.; Garcia-Belmonte, G.; Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 334.  

    24. [24]

      (24) Jennings, J. R.;Wang, Q. J. Phys. Chem. C 2010, 114, 1715.  

    25. [25]

      (25) Sun, Z.; Zhang, R. K.; Xie, H. H.; Liang, M.; Du, R. H.; Xue, S. Electrochim. Acta 2011, 56, 7555.  

    26. [26]

      (26) Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Seró, I. J. Am. Chem. Soc. 2004, 126, 13550.  

    27. [27]

      (27) Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859.  

    28. [28]

      (28) Peter, L. M. J. Phys. Chem. C 2007, 111, 6601.  

    29. [29]

      (29) Barnes, P.; O'Regan, B. J. Phys. Chem. C 2010, 114, 19134.  

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    3. [3]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    4. [4]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    5. [5]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    6. [6]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    7. [7]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    8. [8]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    9. [9]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    14. [14]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    15. [15]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    19. [19]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    20. [20]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

Metrics
  • PDF Downloads(840)
  • Abstract views(2435)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return