Citation: CAO Yan-Bing, DUAN Jian-Guo, JIANG Feng, HU Guo-Rong, PENG Zhong-Dong, DU Ke. Synthesis of LiFePO4 Cathode Materials by Mechanical-Activation-Assisted Polyol Processing[J]. Acta Physico-Chimica Sinica, ;2012, 28(05): 1183-1188. doi: 10.3866/PKU.WHXB201202221 shu

Synthesis of LiFePO4 Cathode Materials by Mechanical-Activation-Assisted Polyol Processing

  • Received Date: 2 November 2011
    Available Online: 22 February 2012

    Fund Project: 国家科技支撑计划项目(2007BAE12B01) (2007BAE12B01)湖南省科技计划项目(2009GK3150)资助 (2009GK3150)

  • A low-temperature approach for efficient preparation of LiFePO4 was developed. The rod-shaped [Fe3(PO4)2·8H2O + Li3PO4] precursor was prepared, using a mechanochemical liquid-phase activation technique, from LiH2PO4 and reduction iron powder. Pure LiFePO4 was then synthesized in boiling tetra(ethylene glycol) (TEG) by polyol processing with the as-prepared precursor. In order to improve the electrical conductivity, carbon coating of the pure LiFePO4 was carried out, using poly(vinyl alcohol) (PVA) as the carbon source. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge test and electrochemical impedance spectroscopy (EIS). The results show that well-crystallized LiFePO4 was successfully synthesized by polyol processing at low temperature. Carbon coating significantly improves the conductive properties of LiFePO4 and reduces charge-transfer impedance. The obtained LiFePO4/C composite delivers specific discharge capacities of 139.8 and 129.5 mAh·g-1 at 1C and 2C rates, respectively, displaying od cycling performance and rate capability.
  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Eletrochem. Soc. 1997, 144, 1188.  

    2. [2]

      (2) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.  

    3. [3]

      (3) Kang, B.; Ceder, G. Nature 2009, 458, 190.  

    4. [4]

      (4) odenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.  

    5. [5]

      (5) Yamada, A.; Chung, S. C.; Hinokuma, K. J. J. Electrochem. Soc. 2001, 148, A224.  

    6. [6]

      (6) Wang, Y. G.;Wang, Y. R.; Hosono, E.;Wang, K. X.; Zhou, H. S. Angew. Chem. Int. Edit. 2008, 47, 7461.  

    7. [7]

      (7) Yu, H. M.; Zheng,W.; Cao, G. S.; Zhao, X. B. Acta Phys.-Chim. Sin. 2009, 25, 2186. [余红明, 郑威, 曹高劭, 赵新兵. 物理化学学报, 2009, 25, 2186.]

    8. [8]

      (8) Shin, H. C.; Cho,W., Jang, H. Electrochim Acta 2006, 52, 1472.  

    9. [9]

      (9) Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.  

    10. [10]

      (10) Chen, Y.;Wang, Z. L.; Yu, C. Y.; Xia, D. G.;Wu, Z. Y. Acta Phys. -Chim. Sin. 2008, 24, 1498. [陈宇, 王忠丽, 于春洋, 夏定国, 吴自玉. 物理化学学报, 2008, 24, 1498.]

    11. [11]

      (11) Delacourt, C.; Poizot, P.; Levasseur, S.; Masquelier, C. Electrochem. Solid-State Lett. 2006, 9, A352.

    12. [12]

      (12) Lim, S. Y.; Yoon, C. S.; Cho, J. P. Chem. Mater. 2008, 20, 4560.  

    13. [13]

      (13) Zhang, S. P. ; Ni, J. F.; ZHOU, H. H.; Zhang, Z. J. Acta Phys.-Chim. Sin. 2008, 23, 830. [张淑萍, 倪江锋, 周恒辉, 张占军. 物理化学学报, 2008, 23, 830.]

    14. [14]

      (14) Liao, X. Z.; Ma, Z. F.;Wang, L. Electrochem. Solid-State Lett. 2004, 7, 522.  

    15. [15]

      (15) Murugan, A. V.; Muraliganth, T.; Manthiram, A. Electrochem. Commun. 2008, 10, 903.  

    16. [16]

      (16) Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. M. Chem. Mater. 2009, 21, 1096.  

    17. [17]

      (17) Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.

    18. [18]

      (18) Kim, D. H.; Kim, J. J Phys. Chem. Solids 2007, 68, 734.  

    19. [19]

      (19) Kim, D. H.; Sim, J.; Kang, J.W. J. Nanosci Nanotechnol. 2007, 7, 3949.  

    20. [20]

      (20) Li, Q. H.; Bi, D. D.; Liu, Z. H.; Liu, Z. Y.; He, F. Chin. Mater. Sci. Eng. Powder Met. 2008, 13, 79. [李启厚, 毕丹丹, 刘志宏, 刘智勇, 何峰. 粉末冶金材料与工程, 2008, 13, 79.]

    21. [21]

      (21) Liu, X. H.; Zhao, Z.W. Powder Technology 2010, 197, 309.  

    22. [22]

      (22) Titirici, M. M.; Antonietti, M.; Thomas, A. Chem. Mater. 2006, 18, 3808.  

    23. [23]

      (23) Murugan, A. V.; Muraliganth, T.; Manthiram, A. J. Phys. Chem. C 2008, 112, 14665.

    24. [24]

      (24) Muraliganth, T.; Murugan, A. V.; Manthiram, A. J. Mater. Chem. 2008, 18, 5661.  

    25. [25]

      (25) Shin, H. C.; Cho,W. I.; Jang, H. J. Power Sources 2006, 159, 1383.  

    26. [26]

      (26) Liu, H.; Cao, Q.; Fu, L. J.; Li, C.;Wu Y. P.;Wu H. Q. Electrochem. Commun. 2006, 8, 1553.  

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    10. [10]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    11. [11]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    12. [12]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    13. [13]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    16. [16]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    17. [17]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    18. [18]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

Metrics
  • PDF Downloads(803)
  • Abstract views(2634)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return