Citation: LIU Dong, SHEN Jun, LI Ya-Jie, LIU Nian-Ping, LIU Bin. Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 843-849. doi: 10.3866/PKU.WHXB201202172 shu

Pore Structures of Carbon Aerogels and Their Effects on Electrochemical Supercapacitor Performance

  • Received Date: 23 November 2011
    Available Online: 17 February 2012

    Fund Project: 国家自然科学基金(11074189) (11074189)上海市科委纳米专项(11nm0501600) 资助项目 (11nm0501600)

  • Control of the pore structures of carbon aerogels (CAs) was investigated by changing the sol-gel polymerization and activation conditions. The morphologies and physical properties of the CAs and KOH activated carbon aerogels (ACAs) were characterized by scanning electron microscopy (SEM) and N2 adsorption isotherms. The electrochemical performances of the CAs and ACAs as electrode materials were characterized using cyclic voltammetry (CV), a galvanostatic charge-discharge test, and electrochemical impedance spectroscopy (EIS). The results showed that the well developed threedimensional nano-network structures and the reasonable pore size distributions of the CAs have great effect on their electrochemical performance in supercapacitors. Because of abundant mesopores and a high specific surface area (1480 m2·g-1), the specific capacitance of a ACA electrode in 6 mol·L-1 KOH electrolyte was approximately 216 F·g-1 at a scan rate of 100 mV·s-1. A simple model was used to investigate the role of the pores in electrochemical performance.
  • 加载中
    1. [1]

      (1) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    2. [2]

      (2) Conway, B. E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications; Kluwer Academic/ Plenum Publishers: NewYork, 1999.

    3. [3]

      (3) Lu, X. J.; Dou, H.; Yang, S. D.; Hao, L.; Zhang, F.; Zhang, X. G. Acta Phys.-Chim. Sin. 2011, 27, 2333. [卢向军, 窦辉, 杨苏东, 郝亮, 张方, 张校刚. 物理化学学报, 2011, 27, 2333.]

    4. [4]

      (4) Xue, R.; Yan, J.W.; Tian, Y.; Yi, B. L. Acta Phys.- Chim. Sin. 2011, 27, 2340. [薛荣, 阎景旺, 田颖, 衣宝廉. 物理化学学报, 2011, 27, 2340.]

    5. [5]

      (5) Cai, J. J.; Kong, L.B.; Zhang, J.; Luo, Y. C.; Kang, L. Chin. Chem. Lett. 2010, 21, 1509.  

    6. [6]

      (6) Pekala, R.W.; Farmer, J. C.; Alviso, C. T.; Tran, T. D.; Mayer, S. T.; Miller, J. M.; Dunn, B. J. Non-Cryst. Solids 1998, 225, 74.  

    7. [7]

      (7) Li, J.;Wang, X. Y.;Wang, Y.; Huang, Q. H.; Dai, C. L.; Gamboa, S.; Sebastian, P. J. J. Non-Cryst. Solids 2008, 354, 19.  

    8. [8]

      (8) Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. J. Non-Cryst. Solids 1998, 225, 81.  

    9. [9]

      (9) Xu, Z. J.; Ji, T.; Zhao, L.;Wang,W. Y.; Yang, C. Y.; Gan, L. H. Acta Phys.- Chim. Sin. 2012, 28, 361. [徐子颉, 吉涛, 赵蕾, 王玮衍, 杨春艳, 甘礼华. 物理化学学报, 2012, 28, 361.]

    10. [10]

      (10) Liu, Y. F.; Hu, Z. H.; Xu, K; Zheng, X.W.; Gao, Q. Acta Phys. -Chim. Sin/ 2008, 24, 1143. [刘亚菲, 胡中华, 鄢许琨, 郑祥伟, 高强. 物理化学学报, 2008, 24, 1143.]  

    11. [11]

      (11) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1999, 146, 3639.  

    12. [12]

      (12) Wang, J. B.; Yang, X. Q.;Wu, D. C.; Fu, R.W.; Dresselhausc, M. S.; Dresselhausc, G. J. Power Sources 2008, 185, 589.  

    13. [13]

      (13) Shi, H. Electrochim. Acta 1996, 41, 1633.  

    14. [14]

      (14) Wang, J.; Chen, M. M.;Wang, C. Y.;Wang, J. Z.; Zheng, J. M. J. Power Sources 2011, 196, 550.  

    15. [15]

      (15) Zhuang, X. G.; Yang, Y. S.; Ji, Y. J.; Yang, D. P.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2003, 19, 689. [庄新国,杨裕生, 嵇友菊, 杨冬平, 唐致远. 物理化学学报, 2003, 19, 689.]

    16. [16]

      (16) Aegerter, M. A.; Leventis, N.; Koebel, M. M. Aerogels Handbook; Springer: New York, 2011; pp 813-826.

    17. [17]

      (17) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221.

    18. [18]

      (18) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  

    19. [19]

      (19) Kiyohara, K. J.; Sugino, T. S.; Asaka, K. J. J. Chem. Phys. 2010, 132, 144705.  

    20. [20]

      (20) Barbieri, O.; Hahn, M.; Herzog, A. Carbon 2005, 43, 1303.  

    21. [21]

      (21) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; tsi, Y.; Simon, P. J. Am. Chem. Soc. 2008, 130 , 2730.  

  • 加载中
    1. [1]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    17. [17]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(1193)
  • Abstract views(2835)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return