Citation: CHEN Xu-Hai, LIU Shao-Li, CHEN Jing-Hua, DU Min, LIN Xin-Hua. Numerical Simulation Based Accurate Models of Improved Chronoamperometry and Its Experimental Validation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 877-884. doi: 10.3866/PKU.WHXB201202141 shu

Numerical Simulation Based Accurate Models of Improved Chronoamperometry and Its Experimental Validation

  • Received Date: 7 December 2011
    Available Online: 14 February 2012

    Fund Project: 国家高技术研究发展规划项目(863) (2008AA02Z433) (863) (2008AA02Z433) 国家自然科学基金(21105012) (21105012) 福建省科技计划项目(2010I0017) (2010I0017) 福建省高校杰出青年科研人才培育计划(JA11105) (JA11105)福建省自然科学基金(2011J01028)资助 (2011J01028)

  • Based on the empirical formula for concentration change of a detected molecule on the surface of a electrode, an approximate mathematical model of improved chronoamperometry was established. The relationship between the working current and detection reagent concentration was analyzed qualitatively. Parameters for the electrode reaction and excitation potential were not included. To solve this problem, the Nernst equation and Fick's law were applied to construct an integral equation for the specific concentrations of the oxidant and reductant on the surface of the electrode. The current-time curve obtained numerically was used to investigate the relationship between the peak current and concentration of reagent, inertia time constant, standard potential of the reference electrode, initial value and steady state value of the voltage excitation. Using the improved chronoamperometry device, we studied the electrochemical behavior of K3[Fe(CN)6]. The experimental results showed that the simulation results from the numerical model were much closer to the actual situation than the empirical model. The experimental results also confirmed the parameter relationships that were derived using the model.
  • 加载中
    1. [1]

      (1) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Chemical Industry Press: Beijing, 2005; pp 111-112; translated by Shao, Y. H., Zhu, G. Y., Dong, X. D., Zhang, B. L. [Bard, A. J.; Faulkner, L. R. 电化学方法—原理和应用. 邵元华, 朱果逸, 董献堆, 张柏林, 译. 北京: 化学工业出版社, 2005: 111-112.]

    2. [2]

      (2) Hu, H. L.; Li, N. Electrochemical Measurement; National Defense Industry: Beijing, 2007; pp 147-153. [胡会利, 李宁. 电化学测量. 北京: 国防工业出版社, 2007: 147-153.]

    3. [3]

      (3) Cheng, H. Y.; McCreery, R. L. J. Electroanal. Chem. 1977, 85, 361.  

    4. [4]

      (4) Dian, G.; Huguet, J.; Caullet, C. J. Electroanal. Chem. 1978, 88, 282.

    5. [5]

      (5) Ge, F.; Cao, R. G.; Zhu, B.; Li, J. J.; Xu, D. S. Acta Phys . -Chim. Sin. 2010, 26, 1779. [戈芳, 曹瑞国, 朱斌, 李经建, 徐东升. 物理化学学报, 2010, 26, 1779.]

    6. [6]

      (6) Nishiumi, T.; Abdul, M. M.; Aoki, K. Electrochem. Commun. 2005, 7, 1213.  

    7. [7]

      (7) Daws, L. C.; Montanez, S.; Owens,W. A.; uld, G. G.; Frazer, A.; Toney, G. M.; Gerhardt, G. A. J. Neurosci. Meth. 2005, 143, 49.  

    8. [8]

      (8) Perez, X. A.; Andrews, A. M. Anal. Chem. 2005, 77, 818.  

    9. [9]

      (9) Yang, Y.; Liu, G.; Liu, H. J.; Li, D.; Fan, C. H.; Liu, D. S. Nano Lett. 2010, 10, 1393.  

    10. [10]

      (10) Wilson, M. S.; Nie,W. Y. Anal. Chem. 2006, 78, 2507.  

    11. [11]

      (11) Moser, I.; Jobst, G.; Urban, G. A. Biosens. Bioelectron. 2002, 17, 297.  

    12. [12]

      (12) Yun, Y. H.; Dong, Z. Y.; Shanov, V. N.; Doepke, A.; Heineman, W. R.; Halsall, H. B.; Bhattacharya, A.;Wong, D. K. Y.; Schulz, M. J. Sens. Actuators B 2008, 133, 208.  

    13. [13]

      (13) Liu, G.;Wan, Y.; Gau, V.; Zhang, J.;Wang, L. H.; Song, S. P.; Fan, C. H. J. Am. Chem. Soc. 2008, 130, 6820.  

    14. [14]

      (14) Wang, K.; Chen, J. H.; Chen, J.; Liu, A.; Li, G.W.; Luo, H. B.; Lin, X. H.; Chen, Y. Z. Electroanalysis 2009, 21, 1159.  

    15. [15]

      (15) Wei, F.;Wang, J. H.; Liao,W.; Zimmermann, B. G.;Wong, D. T.; Ho, C. M. Nucleic Acids Res. 2008, 36, e65.  

    16. [16]

      (16) Klymenko, O. V.; Evans, R. G.; Hardacre, C.; Svir, I. B.; Compton, R. G. J. Electroanal. Chem. 2004, 571, 219.

    17. [17]

      (17) Wang, Y. J.; Rogers, E. I.; Compton, R. G. J. Electroanal. Chem. 2010, 648, 18.

    18. [18]

      (18) Chen, X. H.; Chen, J. H.; Pan, H. B.; Li, Y. R.; Du, M.; Lin, X. H. Acta Phys. -Chim. Sin. 2010, 26, 2920. [陈旭海, 陈敬华, 潘海波, 李玉榕, 杜民, 林新华. 物理化学学报, 2010, 26, 2920.]

    19. [19]

      (19) Cottrell, F. G. Z. Phys. Chem. 1902, 42, 385.

    20. [20]

      (20) Alexander, C. K.; Sadiku, M. N. O. Fundamentals of Electric Circuits, 3rd ed; Posts & Telecom Press: Beijing, 2009; pp 231-234; translated by Guan, X., Song, X.W., Yang, L., Yang, A. P. [Alexander, C. K.; Sadiku, M. N. O. 电路基础. 关欣, 宋晓炜, 杨蕾, 杨爱萍, 译. 北京: 人民邮电出版社, 2009: 231-234.]  

    21. [21]

      (21) Fick, A. Poggendorff' s Ann. Physik. 1855, 94, 59.

    22. [22]

      (22) Zhao, Y. T.;Wang, Y.; Guo, X. P.; Li, H. H. Acta Phys. -Chim. Sin. 2005, 21, 544. [赵永韬, 王昱, 郭兴蓬, 李海洪. 物理化学学报, 2005, 21, 544.]

    23. [23]

      (23) Oppenheim, A. V.;Willsky, A. S.; Nawab, S. H. Signals & Systems, 2nd ed.; Xi'an Jiaotong University Press: Xi'an, 1998; p 495; translated by Liu, S. T. [Oppenheim, A. V.;Willsky, A. S.; Nawab, S. H. 信号与系统. 刘树棠, 译. 西安: 西安交通大学出版社, 1998: 495.]  

    24. [24]

      (24) Song, J. L.; Xu, C. Journal of Xidian University 2004, 31, 968. [宋巨龙, 徐晨. 西安电子科技大学学报, 2004, 31, 968.]

    25. [25]

      (25) Sawyer, D. T.; Roberts, J. L. Experimental Electrochemistry for Chemists; JohnWiley & Sons: New York, 1974; p 332.

  • 加载中
    1. [1]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    2. [2]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    3. [3]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    4. [4]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    5. [5]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    6. [6]

      Liqiang Huang Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    9. [9]

      Yan Li Fei Ding Jielun Yan Qingyang Zhou Zhe Wang Yifan Shi Jing Wang Anna Tang . Improving Instrumental Analytical Chemistry Laboratory Teaching: Developing a Bilingual Classroom to Cultivate Innovative Talents. University Chemistry, 2025, 40(7): 83-89. doi: 10.12461/PKU.DXHX202409059

    10. [10]

      Fanpeng Shang Jiantuo Chen . 多视角分析DMPE盘状双层胶束——第38届中国化学奥林匹克(初赛)第4题解析. University Chemistry, 2025, 40(8): 388-393. doi: 10.12461/PKU.DXHX202410034

    11. [11]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    12. [12]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    13. [13]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    14. [14]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    15. [15]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    16. [16]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    17. [17]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    20. [20]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(777)
  • Abstract views(1820)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return