Citation: YANG Zhi-Bin, DING Wei-Zhong. Reaction Pathway for Reforming Coke Oven Gas over NiO/M Catalyst in an Oxygen Permeation Membrane Reactor[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 935-941. doi: 10.3866/PKU.WHXB201202133 shu

Reaction Pathway for Reforming Coke Oven Gas over NiO/M Catalyst in an Oxygen Permeation Membrane Reactor

  • Received Date: 22 October 2011
    Available Online: 13 February 2012

    Fund Project: 国家高技术研究发展计划(863)(2006AA11A189) (863)(2006AA11A189) 江苏科技大学人才引进(35271103) (35271103)

  • The reaction pathway for reforming coke oven gas (COG) in an oxygen permeation membrane was analyzed. Through the reforming experiments of H2+N2, CH4+N2, CO+N2, H2+CH4+N2 mixtures, with or without a catalyst and the catalyst bed, the reaction scheme is proposed: H2 in COG is absorbed and dissociates on Ni particle on catalyst, the H* of dissociation migrates to high active site (“triphase boundary”) and reacts with diffused oxygen or lattice oxygen on film surface to form H2O. The CH4 also could be dissociated on active metal surface to form CH3* and H*. The H2O formed reacts with the C species to form H2 and CO. At last the residual H2O reacts with the residual CH4 on the catalyst bed to form H2 and CO.
  • 加载中
    1. [1]

      (1) Chen, J. X.; Qiu, Y. J.; Zhang, J. Y.; Su,W. H. Acta Phys . -Chim. Sin. 2004, 20, 76. [陈吉祥, 邱业君, 张继炎, 苏万华. 物理化学学报, 2004, 20, 76.]

    2. [2]

      (2) Ai, X. P.; Yue, B. H.;Wang, X. G.; Yang, J.; Lu, X. G.; Ding,W. Z. Acta Phys . -Chim. Sin. 2009, 25, 1517. [艾馨鹏, 岳宝华, 汪学广, 杨军, 鲁雄刚, 丁伟中. 物理化学学报, 2009, 25, 1517.]

    3. [3]

      (3) Yang, Z. B.; Zhang, Y.W.; Zhang, Y. Y.; Ding,W. Z.; Shen, P. J.; Liu, Y.; Zhou, Y. D.; Huang, S. Q. Acta Phys . -Chim. Sin. 2010, 26, 350.

    4. [4]

      (4) Zhang, Y. Y.; Li, Q.; Shen, P. J.; Liu, Y.; Yang, Z. B.; Ding,W. Z.; Lu, X. G. Int. J. Hydrog. Energy 2008, 33, 3311.  

    5. [5]

      (5) Yang, Z. B.; Ding,W. Z.; Zhang, Y. Y.; Lu, X. G.; Zhang, Y.W.; Shen, P. J. Int. J. Hydrogen Energy 2010, 35, 6239.  

    6. [6]

      (6) Cheng, H.W.; Zhang, Y.W.; Lu, X. G.; Ding,W. Z.; Li, Q. Energy & Fuels 2009, 23, 414.  

    7. [7]

      (7) Yang, Z. B.; Zhang, Y. Y.; Ding,W. Z.; Zhang, Y.W.; Shen, P. J.; Zhou, Y. D.; Liu, Y.; Huang, S. Q.; Lu, X. G. J .Natural Gas Chemistry 2009, 18, 407.  

    8. [8]

      (8) Nakagawa, K.; Ikenalca, N.; Teng, Y.; Kobayaslii, T.; Suzulci, T. J. Catal. 1999, 186, 405.  

    9. [9]

      (9) Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319.  

    10. [10]

      (10) Hickman, D. A.; Schmidt, L. D. Science 1993, 259, 343.  

    11. [11]

      (11) Hickman, D. A.; Schmidt, L. D. J. Catal. 1992,138, 267.  

    12. [12]

      (12) Shao, Z. P.; Xiong, G. X.; Dong, H.; Yang,W. S.; Lin, L.W. Separ. Purif. Technol. 2001, 25, 97.  

    13. [13]

      (13) Ikeguchi, M.; Mimura, T.; Sekine, Y.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2005, 290, 212.

    14. [14]

      (14) Wang, B. Dense Oxygen Permeable Membranes and Membrane-based Process. Ph. D. Dissertation, University of Science and Technology of China, Hefei, 2006. [汪波. 高温致密透氧膜材料和膜过程研究[D]. 合肥: 中国科技大学, 2006]

    15. [15]

      (15) Wang, H. H.; Cong, Y.; Yang,W. S. Catal. Today 2003, 82, 157.  

    16. [16]

      (16) Chen, C. S.; Feng, S. J.; Ran, S.; Zhu, D. C.; Liu,W.; Bouwmeester, H. J. M. Angew Chem. Int. Edit. 2003, 42, 5196.  

    17. [17]

      (17) FisherⅡ, J. C.; Steven, S.; Chuang, C. Catal. Commun. 2009, 10, 772.  

    18. [18]

      (18) Zhu, D. C.; Xu, X.Y.; Feng, S. J.; Liu,W.; Chen, C. S. Catal. Today 2003, 82, 151.  

    19. [19]

      (19) Karmer, R.; Andre, M. J. Catal. 1979, 58, 287.  

    20. [20]

      (20) Sen, B.; Falconer, J. L.; Mao, T. F.; Tu, M. J. Catal. 1990, 126, 465.  

    21. [21]

      (21) Shen, P. J.; Ding,W. Z.; Zhou, Y. D.; Huang, S. Q. Applied Surface Science 2010, 256, 5094.  

    22. [22]

      (22) Zhang,W. X.; Smit, J.; Van Sint Annaland, M.; Kuipers, J. A. M. J. Membr. Sci. 2007, 291, 19.  

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    8. [8]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    9. [9]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    10. [10]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    11. [11]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    12. [12]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    13. [13]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(656)
  • Abstract views(1609)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return