Citation: WANG Wen-Qing, SHEN Xin-Chun, WU Ji-Lan, NG Yan, SHEN Guo-Hua, ZHAO Hong-Kai. Heat Capacity and DC-Magnetic Susceptibility Evidence for the Asymmetry of Electron Spin-Flip Phase Transition of N+H…O- Bond in Chiral Alanine Crystal[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 773-780. doi: 10.3866/PKU.WHXB201202132 shu

Heat Capacity and DC-Magnetic Susceptibility Evidence for the Asymmetry of Electron Spin-Flip Phase Transition of N+H…O- Bond in Chiral Alanine Crystal

  • Received Date: 31 October 2011
    Available Online: 13 February 2012

    Fund Project: 国家自然科学基金(21002006, 20452002) (21002006, 20452002)国家科技部基础研究重大项目(2004-973-36)资助 (2004-973-36)

  • With a view to understanding the argument of phase-transition mechanisms of D- and L-alanine at around 270 K, the temperature dependence of heat capacity measurements was investigated, for single crystals, ground powders, and polycrystalline products, using differential scanning calorimetry (DSC). The Cp (heat capacity under constant pressure) values of D- and L-alanine were calibrated with standard sapphire by the triple-curve method; these values coincide with the standard Cp values in the literature. Endothermic transition peaks were observed at Tc=272.02 K, ΔH=1.87 J·mol-1 and Tc=271.85 K, ΔH=1.46 J·mol-1 for D- and L- alanine, respectively, and Tc=273.59 K, ΔH=1.75 J·mol-1 and Tc=273.76 K, ΔH=1.57 J·mol-1 for the reference crystals D- and L-valine, respectively. The energy differences of 0.41 J· mol-1 for D-and L-alanine and 0.18 J·mol-1 for D- and L-valine, which were observed from pre-aligned molecules in the single crystals and vanished in the ground powders and polycrystalline products, show that the phase transition is related to the crystal lattice. Neutron diffraction results exclude the possibility of a D→L configuration change, and show that the hydrogen bonds run antiparallel to the c-axis in the D- and Lcrystals. Polarized Raman vibrational spectroscopy shows that the transition mechanism may be related to the electronic orbital angular momentum and magnetic dipole moments of N+H…O- in the crystals. External magnetic fields, H=+1, -1 T, were applied parallel to the c(z)-axis of the D- and L-alanine crystalline lattices, respectively. The DC-magnetic susceptibilities show electron spin-flip transitions at around 270 K in D- and L-alanine. The spin is“up”or“down”relative to the direction of N+H…O- bond along the c(z)-axis. Based on spin rigidity and magnetic anisotropy, the results help to explain the discrepancies among heat capacity and magnetic susceptibility data for single crystals and polycrystalline powders of D- and L-alanine.
  • 加载中
    1. [1]

      (1) MacDermott, A. J. Enantiomer 2000, 5, 153.

    2. [2]

      (2) MacDermott, A. J.; Hegstrom, R. A. Chemical Physics 2004, 305, 55.  

    3. [3]

      (3) Simpson, H. J.; Marsh, R. E. Acta Cryst. 1966, 20, 550.  

    4. [4]

      (4) Destro, R.; Marsh, R. E. J. Phys. Chem. 1988, 92, 966.  

    5. [5]

      (5) Crowell, R. A.; Chronister, E. L. Phys. Rev. B 1993, 48, 172.  

    6. [6]

      (6) Kosic T. J.; Raymond, E. C., Jr. Chem. Phys. Lett. 1983, 103, 109.  

    7. [7]

      (7) Gledhill, M. Analyst 2001, 126, 1359.  

    8. [8]

      (8) Cronin J. R.; Pizzarello, S. Science 1997, 275, 951.  

    9. [9]

      (9) Wang,W. Q.; ng, Y.; Liang, Z.; Sun, F. L.; Shi, D. X.; Gao, H. J.;Wang, Z. M. Surface Science 2002, 512, L379.

    10. [10]

      (10) Perkin-Elmer Corporation, Thermal Analysis Instrument Division, Shanghai, 2008

    11. [11]

      (11) Mraw, S. C. Rev. Sci. Instrum. 1982, 53, 228.  

    12. [12]

      (12) Pak, J.; Qiu,W.; Pyda, M.; Nowak-Pyda, E.;Wunderlic, B. J. Therm. Anal. Cal. 2005, 82, 565.  

    13. [13]

      (13) Morad, N. A.; Idrees, M.; Hasan, A. A. J. Therm. Anal. 1995, 44, 823.  

    14. [14]

      (14) (a) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Am. Chem. Soc. 1960, 82, 4813. (b) Handbook of Biochemistry and Molecular Biology V.4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    15. [15]

      (15) Huffman, H. M.; Borsook, H. J. Am. Chem. Soc. 1932, 54, 4297. Handbook of Biochemistry and Molecular Biology V. 4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    16. [16]

      (16) Wilson, C. C.; Myles, D.; Ghosh, M.; Johnson, L. N.;Wang,W. Q. New J. Chem. 2005, 29, 1318.  

    17. [17]

      (17) Wang,W. Q.; Liu, Y. N.; ng, Y. Acta Phys. -Chim. Sin. 2004, 20, 1345. [王文清, 刘轶男, 龚. 物理化学学报, 2004, 20, 1345.]

    18. [18]

      (18) Wang,W. Q.; ng, Y.; Yao, N. Acta Phys. -Chim. Sin. 2005, 21, 774. [王文清, 龚, 姚楠. 物理化学学报, 2005, 21, 774.]

    19. [19]

      (19) Forss, S. A. J. Raman Spec. 1982, 12, 266.  

    20. [20]

      (20) Sullivan, R.; Pyda, M.; Pak, J.;Wunderlich, B.; Thompson, J. R.; Pagni, R.; Pan, H. J.; Barnes, C.; Schwerdtfeger, P.; Compton, R. J. Phys. Chem. 2003, 107, 6674.  

    21. [21]

      (21) Hutchens, J. O.; Cole, A. G.; Stout, J.W. J. Phys. Chem. 1963, 67, 1128. Handbook of Biochemistry and Molecular Biology V. 4; Physical and Chemical data, CRC Press: Cleveland, 1976.  

    22. [22]

      (22) Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particlesm, 2nd ed. JohnWiley & Sons: 1985; p 432.

    23. [23]

      (23) Barron, L. D.; Buckingham, A. D. Accounts Chem. Res. 2001, 34, 785.

    24. [24]

      (24) Ray, K.; Ananthavel, S. P.;Waldeck, D. H.; Naaman, R. Science 1999, 283, 814.  

    25. [25]

      (25) ng, Y. Ph. D. Dissertation, Peking University, Beijing, 2006.

    26. [26]

      (26) Compton, R. N.; Pagni, R. M. Adv. At. Mol. Opt. Phy. 2002, 48, 219.

    27. [27]

      (27) Barron, L. D. Space Sci. Rev. 2008, 135, 187.  

    28. [28]

      (28) Lorenzo, J. E.; Boullier, C.; Regnault, L. P.; Ammerahl, U.; Revcolevschi, A. Phys. Rev. B 2007, 75, 054418.  

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    9. [9]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    11. [11]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    15. [15]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

Metrics
  • PDF Downloads(628)
  • Abstract views(1914)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return