Citation: YANG Wei-Hua, YANG Wu-Tao, LIN Xiao-Yan. Preparation and Characterization of a Novel Bi-Doped PbO2 Electrode[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 831-836. doi: 10.3866/PKU.WHXB201202101 shu

Preparation and Characterization of a Novel Bi-Doped PbO2 Electrode

  • Received Date: 3 January 2012
    Available Online: 10 February 2012

    Fund Project: 国家自然科学基金(21103055) (21103055)华侨大学基本科研业务专项基金(JB-ZR1139)资助项目 (JB-ZR1139)

  • A novel high-performance PbO2 electrode modified with Bi3+ (Bi-PbO2) was prepared by electrodeposition. The microstructure and electrochemical properties of the modified electrode were investigated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), fluorospectrophotometry (FP), Mott-Schottky analysis, electrochemical impedance spectroscopy (EIS), and linear-sweep voltammetry (LSV). The results of SEM, EDS, XPS, XRD, and UV-Vis DRS show that insertion of Bi3+ , which is in the form of Bi2O3, into the PbO2 film can reduce its particle size, change its crystal cell parameters, and narrow its bandgap (Eg). FP analysis reveals that the electrocatalytic activity of the Bi-PbO2 electrode in the degradation of organic materials is higher than that of the PbO2 electrode because more hydroxyl radicals can be generated on its surface. Electrochemical performance tests show that the modified electrode has a more negative flat-band potential (Efb), larger active surface area, lower charge-transfer resistance, and higher oxygen-evolution potential; these characteristics promote the electrocatalytic activity of the Bi-PbO2 electrode in the decomposition of organic materials.
  • 加载中
    1. [1]

      (1) Martínez-Huitle, C. A.; Ferro, S. Chem. Soc. Rev. 2006, 35, 1324.  

    2. [2]

      (2) Awad, H. S.; Galwa, N. A. Chemosphere 2005, 61, 1327.  

    3. [3]

      (3) Panizza, M.; Cerisola, G. Electrochim. Acta 2003, 48, 3491.  

    4. [4]

      (4) Kokoh, K. B.; Hahn, F.; Belgsir, E. M.; Lamy, C.; Andrade, A. R.; Olivi, P.; Motheo, A. J.; Tremiliosi-Filho, G. Electrochim. Acta 2004, 49, 2077.  

    5. [5]

      (5) Andradea, L. S.; Rocha-Filhoa, R. C.; Bocchia, N.; Biaggioa, S. R.; Iniestab, J.; García-Garciab, V.; Montielb, V. J. Hazard Mater. 2008, 153, 252.  

    6. [6]

      (6) Kong, J.; Shi, S.; Kong, L.; Zhu, X.; Ni, J. Electrochim. Acta 2007, 53, 2048.  

    7. [7]

      (7) Song, Y.;Wei, G.; Xiong, R. Electrochim. Acta 2007, 52, 7022.  

    8. [8]

      (8) Ai, S.; Gao, M.; Zhang,W.;Wang, Q.; Xie, Y.; Jin, L. Talanta 2004, 62, 445.  

    9. [9]

      (9) Velichenko, A. B.; Amadelli, R.; Baranova, E. A. J. Electroanal. Chem. 2002, 527, 56.  

    10. [10]

      (10) Li, G.; Qu, J.; Zhang, X.; Ge, J. Water Res. 2006, 40, 213.  

    11. [11]

      (11) Tong, S.; Ma, C.; Feng, H. Electrochim. Acta 2008, 53, 3002.  

    12. [12]

      (12) Liu, Y.; Liu, H. Electrochim. Acta 2008, 53, 5077.  

    13. [13]

      (13) Anglada, A.; Urtiaga, A.; Ortiz, I. Environ. Sci. Technol. 2009, 43, 2035.  

    14. [14]

      (14) Lindsey, M. E.; Tarr, M. A. Chemosphere 2000, 41, 409.  

    15. [15]

      (15) Lindsey, M. E.; Tarr, M. A. Environ. Sci. Technol. 2000, 34, 444.  

    16. [16]

      (16) Baumanis, C.; Bahnemann, D.W. J. Phys. Chem. C 2008, 112, 19097.

    17. [17]

      (17) Cong, Y.;Wu, Z. J. Phys. Chem. C 2007, 111, 3442.  

    18. [18]

      (18) Yua, N.; Gao, L.; Zhao, S.;Wang, Z. Electrochim. Acta 2009, 54, 3835.  

    19. [19]

      (19) Liu, H.; Liu, Y.; Zhang, C.; Shen, R. J. Appl. Electrochem. 2008, 38, 101.

    20. [20]

      (20) Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K.; J. Power Sources 2008, 181, 46.  

    21. [21]

      (21) El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M. J. Hazard. Mater. 2009, 166, 138.  

    22. [22]

      (22) Li, H.;Wang, D.; Fan, H.;Wang, P.; Jiang, T.; Xie, T. J. Colloid Interface Sci. 2011, 354, 175.  

    23. [23]

      (23) Banerjee, S.; Banerjee, S. Int. J. Eng. Sci. 2011, 3, 2134.

    24. [24]

      (24) Ciríaco, L.; Anjo, C.; Correia, J.; Pacheco, M. J.; Lopes, A. Electrochim. Acta 2009, 54, 1464.  

    25. [25]

      (25) Kong, D.; Lu,W.; Feng, Y.; Bi, S. Prog. Chem. 2009, 21, 1107.

    26. [26]

      (26) Harrington, S. P.; Devine, T. M. J. Electrochem. Soc. 2008, 155, 381.  

    27. [27]

      (27) Cheng, F.; Su, Y.; Liang, J.; Tao, Z. Chem. Mater. 2010, 22, 898.  

    28. [28]

      (28) Song, S.; Zhang, H.; Ma, X.; Shao, Z.; Baker, R. T.; Yi, B. Int . J. Hydrog. Energy 2008, 33, 4955.  

    29. [29]

      (29) Donne, S.W.; Kennedy, J. H. J. Appl. Electrochem. 2004, 34, 159.  

    30. [30]

      (30) Lao, G. H.; Shao, H. B.; Fan, Y. Q.;Wang, J. M.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2011, 27, 627. [劳国洪, 邵海波, 樊玉欠, 王建明, 张鉴清, 曹楚南. 物理化学学报, 2011, 27, 627.]

  • 加载中
    1. [1]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    3. [3]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    17. [17]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    18. [18]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(778)
  • Abstract views(2450)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return