Citation:
XUE Meng-Wei, ZHOU Yu-Ming, ZHANG Yi-Wei, HUANG Li, LIU Xuan, DUAN Yong-Zheng. Effects of Mg Addition on Catalytic Performance of PtNa/Sn-ZSM-5 in Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica,
;2012, 28(04): 928-934.
doi:
10.3866/PKU.WHXB201202073
-
The effects of Mg addition on the catalytic performance of PtNa/Sn-ZSM-5 in propane dehydrogenation was investigated using catalytic reaction performance tests and physicochemical characterizations such as X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), H2 temperature-programmed reduction (H2-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that addition of appropriate amounts of Mg (0.3% and 0.5%, mass fraction) promoted the dispersion of metallic particles and decreased carbon deposition. In these cases, the presence of Mg in the PtMgNa/Sn-ZSM-5 catalyst could inhibit reduction of Sn species, thus more Sn could exist in oxidized states, which is advantageous to the reaction. However, when the content of Mg was excessive, the metallic particles were not well distributed and the particles agglomerated more easily. Moreover, the reduction of Sn species at high temperatures is relatively easy, which is disadvantageous to the reaction. In our experiments, the addition of 0.5% Mg to the PtNa/Sn-ZSM-5 catalyst gave the best catalytic performance. After reaction for 7 h, higher than 95% selectivity toward propene was achieved with a corresponding propane conversion value of 38.7%.
-
Keywords:
-
Mg
, - Sn-ZSM-5,
- Propane dehydrogenation,
- Catalytic performance,
- Catalyst
-
-
-
-
[1]
(1) Chen, M.; Xu, J.; Cao, Y.; He, H. Y.; Fan, K. N. J. Catal. 2010, 272 (1), 101.
-
[2]
(2) Yu, C. L.; Xu, H. Y.; Chen, X. R.; Ge, Q. J.; Li,W. Z. J. Fuel. Chem. Technol. 2010, 38 (3), 308.
-
[3]
(3) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Ind. Eng. Chem. Res. 2006, 45, 2213.
-
[4]
(4) Liu, H.; Zhou, Y. M.; Zhang, Y.W.; Bai, L. Y.; Tang, M. H. Ind. Eng. Chem. Res. 2009, 48 (12), 5598.
-
[5]
(5) Duan, Y. Z.; Zhou, Y. M.; Zhang, Y.W.; Sheng, X. L.; Xue, M. W. Catal. Lett. 2011, 141 (1), 120.
-
[6]
(6) Pisduangdaw, S.; Panpranot, J.; Methastidsook, C.; Chaisuk, C.; Faungnawakij, K.; Praserthdam, P.; Mekasuwandumrong, O. Appl. Catal. A: Gen. 2009, 370, 1.
-
[7]
(7) Praserthdam, P.; Grisdanurak, N.; Yuangsawatdikul,W. Chem. Eng. J. 2000, 77, 215.
-
[8]
(8) Yu, C. L.; Ge, Q. J.; Xu, H. Y.; Li,W. Z. Appl. Catal A: Gen. 2006, 315, 58.
-
[9]
(9) Zhang, Y.W.; Zhou, Y. M.; Liu, H.;Wang, Y.; Xu, Y.;Wu, P. C. Appl. Catal. A: Gen. 2007, 333 (2), 202.
-
[10]
(10) Lobera, M. P.; Tellez, C.; Herguido, J.; Schuurman, Y.; Menendez, M. Chem. Eng. J. 2011, 171 (3), 1317.
-
[11]
(11) Siddiqi, G.; Sun, P. P.; Galvita, V.; Bell, A. T. J. Catal. 2010, 274, 200.
-
[12]
(12) Zhang, S. B.; Zhou, Y. M.; Zhang, Y.W.; Huang, L. Catal. Lett. 2010, 135, 76.
-
[13]
(13) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Tang, M. H. Catal. Lett. 2009, 129, 449.
-
[14]
(14) Kumar, M. S.; Chen, D. Microporous Mesoporous Mat. 2009, 126, 152.
-
[15]
(15) Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Appl.Catal. A: Gen. 2008, 351, 16.
-
[16]
(16) Barros, I. C. L.; Braga, V. S.; Pinto, D. S.; Macedo, J. L.; Filho, G. N. R.; Dias, J. A.; Dias, S. C. L. Microporous Mesoporous Mat. 2008, 109, 485.
-
[17]
(17) Zhang, Y.W.; Zhou, Y. M.; Huang, L.; Xue, M.W.; Zhang, S. B. Ind. Eng. Chem. Res. 2011, 50 (13), 7896.
-
[18]
(18) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Sheng, X. L. Ind. Eng. Chem. Res. 2009, 48 (22), 9885.
-
[19]
(19) de Graaf, E. A.; Kooyman, P. J.; Andreini, A.; Bliek, A. Appl. Catal. A: Gen. 2005, 278, 187.
-
[20]
(20) Kumar, M. S.; Chen, D.; Holmen, A.;Walmsley, J. C. Catal. Today 2009, 142, 17.
-
[21]
(21) Lobree, I. J.; Hwang, I. C.; Reimer, J. A.; Bell, A. T. J. Catal. 1999, 186, 242.
-
[22]
(22) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu. P. C. Acta Phys. -Chim. Sin. 2006, 22 (6), 672. [张一卫, 周钰明, 邱安定, 王玉, 许艺, 吴沛成. 物理化学学报, 2006, 22 (6), 672.]
-
[23]
(23) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Catal. Commun. 2006, 7 (11), 860.
-
[24]
(24) Yu, C. L.; Xu, H. Y.; Ge, Q. J.; Li,W. Z. J. Mol. Catal. A: Chem. 2007, 266 (1-2), 80.
-
[25]
(25) Yang,W. S.;Wu, R. A.; Lin, L.W. Petrochem. Technol. 1992, 8, 511. [杨维慎, 吴荣安, 林励吾. 石油化工, 1992, 8, 511.]
-
[26]
(26) Zhang, Y.W.; Zhou, Y. M.;Wan, L. H.; Xue, M.W.; Duan, Y. Z.; Liu, X. Fuel. Process. Technol. 2011, 92 (8), 1632.
-
[27]
(27) Afonso, J. C.; Schmal, M.; Frety, R. Fuel. Process. Technol. 1994, 41 (1), 13.
-
[1]
-
-
-
[1]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[2]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[3]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[6]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[7]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[8]
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
-
[9]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
-
[10]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[11]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[12]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[15]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026
-
[16]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016
-
[17]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[18]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[19]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[20]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[1]
Metrics
- PDF Downloads(862)
- Abstract views(3349)
- HTML views(8)