Citation: XUE Meng-Wei, ZHOU Yu-Ming, ZHANG Yi-Wei, HUANG Li, LIU Xuan, DUAN Yong-Zheng. Effects of Mg Addition on Catalytic Performance of PtNa/Sn-ZSM-5 in Propane Dehydrogenation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 928-934. doi: 10.3866/PKU.WHXB201202073 shu

Effects of Mg Addition on Catalytic Performance of PtNa/Sn-ZSM-5 in Propane Dehydrogenation

  • Received Date: 25 November 2011
    Available Online: 7 February 2012

    Fund Project: 国家自然科学基金(50873026, 21106017) (50873026, 21106017) 江苏省产学研前瞻性联合研究项目(BY2009153) (BY2009153)高等学校博士学科点专项科研基金(20100092120047)资助 (20100092120047)

  • The effects of Mg addition on the catalytic performance of PtNa/Sn-ZSM-5 in propane dehydrogenation was investigated using catalytic reaction performance tests and physicochemical characterizations such as X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), NH3 temperature-programmed desorption (NH3-TPD), H2 temperature-programmed reduction (H2-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that addition of appropriate amounts of Mg (0.3% and 0.5%, mass fraction) promoted the dispersion of metallic particles and decreased carbon deposition. In these cases, the presence of Mg in the PtMgNa/Sn-ZSM-5 catalyst could inhibit reduction of Sn species, thus more Sn could exist in oxidized states, which is advantageous to the reaction. However, when the content of Mg was excessive, the metallic particles were not well distributed and the particles agglomerated more easily. Moreover, the reduction of Sn species at high temperatures is relatively easy, which is disadvantageous to the reaction. In our experiments, the addition of 0.5% Mg to the PtNa/Sn-ZSM-5 catalyst gave the best catalytic performance. After reaction for 7 h, higher than 95% selectivity toward propene was achieved with a corresponding propane conversion value of 38.7%.
  • 加载中
    1. [1]

      (1) Chen, M.; Xu, J.; Cao, Y.; He, H. Y.; Fan, K. N. J. Catal. 2010, 272 (1), 101.

    2. [2]

      (2) Yu, C. L.; Xu, H. Y.; Chen, X. R.; Ge, Q. J.; Li,W. Z. J. Fuel. Chem. Technol. 2010, 38 (3), 308.

    3. [3]

      (3) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Ind. Eng. Chem. Res. 2006, 45, 2213.  

    4. [4]

      (4) Liu, H.; Zhou, Y. M.; Zhang, Y.W.; Bai, L. Y.; Tang, M. H. Ind. Eng. Chem. Res. 2009, 48 (12), 5598.

    5. [5]

      (5) Duan, Y. Z.; Zhou, Y. M.; Zhang, Y.W.; Sheng, X. L.; Xue, M. W. Catal. Lett. 2011, 141 (1), 120.

    6. [6]

      (6) Pisduangdaw, S.; Panpranot, J.; Methastidsook, C.; Chaisuk, C.; Faungnawakij, K.; Praserthdam, P.; Mekasuwandumrong, O. Appl. Catal. A: Gen. 2009, 370, 1.  

    7. [7]

      (7) Praserthdam, P.; Grisdanurak, N.; Yuangsawatdikul,W. Chem. Eng. J. 2000, 77, 215.  

    8. [8]

      (8) Yu, C. L.; Ge, Q. J.; Xu, H. Y.; Li,W. Z. Appl. Catal A: Gen. 2006, 315, 58.  

    9. [9]

      (9) Zhang, Y.W.; Zhou, Y. M.; Liu, H.;Wang, Y.; Xu, Y.;Wu, P. C. Appl. Catal. A: Gen. 2007, 333 (2), 202.

    10. [10]

      (10) Lobera, M. P.; Tellez, C.; Herguido, J.; Schuurman, Y.; Menendez, M. Chem. Eng. J. 2011, 171 (3), 1317.

    11. [11]

      (11) Siddiqi, G.; Sun, P. P.; Galvita, V.; Bell, A. T. J. Catal. 2010, 274, 200.  

    12. [12]

      (12) Zhang, S. B.; Zhou, Y. M.; Zhang, Y.W.; Huang, L. Catal. Lett. 2010, 135, 76.  

    13. [13]

      (13) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Tang, M. H. Catal. Lett. 2009, 129, 449.  

    14. [14]

      (14) Kumar, M. S.; Chen, D. Microporous Mesoporous Mat. 2009, 126, 152.  

    15. [15]

      (15) Silvestre-Albero, J.; Serrano-Ruiz, J. C.; Sepulveda-Escribano, A.; Rodriguez-Reinoso, F. Appl.Catal. A: Gen. 2008, 351, 16.  

    16. [16]

      (16) Barros, I. C. L.; Braga, V. S.; Pinto, D. S.; Macedo, J. L.; Filho, G. N. R.; Dias, J. A.; Dias, S. C. L. Microporous Mesoporous Mat. 2008, 109, 485.  

    17. [17]

      (17) Zhang, Y.W.; Zhou, Y. M.; Huang, L.; Xue, M.W.; Zhang, S. B. Ind. Eng. Chem. Res. 2011, 50 (13), 7896.

    18. [18]

      (18) Bai, L. Y.; Zhou, Y. M.; Zhang, Y.W.; Liu, H.; Sheng, X. L. Ind. Eng. Chem. Res. 2009, 48 (22), 9885.

    19. [19]

      (19) de Graaf, E. A.; Kooyman, P. J.; Andreini, A.; Bliek, A. Appl. Catal. A: Gen. 2005, 278, 187.  

    20. [20]

      (20) Kumar, M. S.; Chen, D.; Holmen, A.;Walmsley, J. C. Catal. Today 2009, 142, 17.  

    21. [21]

      (21) Lobree, I. J.; Hwang, I. C.; Reimer, J. A.; Bell, A. T. J. Catal. 1999, 186, 242.  

    22. [22]

      (22) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu. P. C. Acta Phys. -Chim. Sin. 2006, 22 (6), 672. [张一卫, 周钰明, 邱安定, 王玉, 许艺, 吴沛成. 物理化学学报, 2006, 22 (6), 672.]  

    23. [23]

      (23) Zhang, Y.W.; Zhou, Y. M.; Qiu, A. D.;Wang, Y.; Xu, Y.;Wu, P. C. Catal. Commun. 2006, 7 (11), 860.  

    24. [24]

      (24) Yu, C. L.; Xu, H. Y.; Ge, Q. J.; Li,W. Z. J. Mol. Catal. A: Chem. 2007, 266 (1-2), 80.  

    25. [25]

      (25) Yang,W. S.;Wu, R. A.; Lin, L.W. Petrochem. Technol. 1992, 8, 511. [杨维慎, 吴荣安, 林励吾. 石油化工, 1992, 8, 511.]

    26. [26]

      (26) Zhang, Y.W.; Zhou, Y. M.;Wan, L. H.; Xue, M.W.; Duan, Y. Z.; Liu, X. Fuel. Process. Technol. 2011, 92 (8), 1632.  

    27. [27]

      (27) Afonso, J. C.; Schmal, M.; Frety, R. Fuel. Process. Technol. 1994, 41 (1), 13.  

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(862)
  • Abstract views(3315)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return