Citation: ZHAO Hui-Min, LIN Dan, YANG Gang, CHUN Yuan, XU Qin-Hua. Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 985-992. doi: 10.3866/PKU.WHXB201202071 shu

Adsorption Capacity of Carbon Dioxide on Amine Modified Mesoporous Materials with Larger Pore Sizes

  • Received Date: 1 September 2011
    Available Online: 7 February 2012

    Fund Project: 国家高技术研究发展计划项目(863) (2008AA06Z327) (863) (2008AA06Z327) 中央高校基础研究基金(1116020503) (1116020503)南京大学开放测试基金(0205001330)资助 (0205001330)

  • Mesoporous silica SBA-15-like materials with large pores were synthesized using tri-block copolymer P123 as a structure-directing agent, tetramethoxysilane as the silicon source, and different organic solvents as swelling agents. The resulting materials were characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results showed that the introduction of swelling agents effectively enlarged the pore diameter and pore volume of the SBA-15 materials, and pore swelling with isooctane was larger than that with CCl4. When modified with tetraethylenepentamine (TEPA), all of these composite materials exhibited excellent adsorption capacities for CO2. The adsorption capacity of CO2 was independent of the pore structure, if the template was removed before modification with TEPA. By contrast, the adsorption capacity increased with the pore diameter when the as-synthesized mesoporous material was modified with TEPA. The effects of temperature and pressure on the CO2 adsorption capacity were investigated using adsorption isotherms and CO2 temperature-programmed desorption (TPD). With CO2 adsorption at higher temperature, the composite materials showed different adsorption capacities with pressure variation. As a result, the adsorption and separation of CO2 on these TEPA modified mesoporous materials in ambient air flow can be realized via pressure swing adsorption.
  • 加载中
    1. [1]

      (1) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356.  

    2. [2]

      (2) Melillo, J. M.; Mcguire, A. D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C. J.; Schloss, A. L. Nature 1993, 363, 234.  

    3. [3]

      (3) Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998.  

    4. [4]

      (4) Kim, J.; Yang, S. T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn,W. S. J. Mater. Chem. 2011, 21, 3070.  

    5. [5]

      (5) An, J.; Rosi, N. L. J. Am. Chem. Soc. 2010, 132, 5578.  

    6. [6]

      (6) Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Ind. Eng. Chem. Res. 1999, 38, 3917.  

    7. [7]

      (7) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W. Energy Fuels 2002, 16, 1463.  

    8. [8]

      (8) Xu, X.; Song, C.; Miller, B. G.; Scaroni, A.W. Ind. Eng. Chem. Res. 2005, 44, 8113.  

    9. [9]

      (9) Liu, Y. M.; Shi, J. J.; Chen, J.; Ye, Q.; Pan, H.; Shao, Z. H.; Shi, Y. Microporous Mesoporous Mat. 2010, 134, 16.  

    10. [10]

      (10) Choi, S.; Drese, J. H.; Jones, C.W. ChemSusChem 2009, 2, 796.  

    11. [11]

      (11) Peter, J. E.; Harlick, Abdelhamid, S. Ind. Eng. Chem. Res. 2006, 45, 3248.  

    12. [12]

      (12) Sayari, A.; Belmabkhout, Y. J. Am. Chem. Soc. 2010, 132, 6312.  

    13. [13]

      (13) Zhao, H. L.; Hu, J.;Wang, J. J.; Zhou, L. H.; Liu, H. L. Acta Phys. -Chim. Sin. 2007, 23, 801. [赵会玲, 胡军, 汪建军, 周丽绘, 刘洪来. 物理化学学报, 2007, 23, 801.]  

    14. [14]

      (14) Chen, C.; Yang, S. T.; Ahn,W. S.; Ryoo, R. Chem. Commun. 2009, 3627.

    15. [15]

      (15) Qi, G.;Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. A.; Li,W.; Jones, C.W.; Giannelis, E. P. Environ. Sci. Technol. 2011, 4, 444.

    16. [16]

      (16) Yue, M. B.; Chun, Y.; Cao, Y.; Dong, X.; Zhu, J. H. Adv. Funct. Mater. 2006, 16, 1717.  

    17. [17]

      (17) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Y.;Wang, Z. J.; Zhu, J. H. Chem. Eur. J. 2008, 14, 3442.  

    18. [18]

      (18) Yue, M. B.; Sun, L. B.; Cao, Y.;Wang, Z. J.;Wang, Y.; Yu, Q.; Zhu, J. H. Microporous Mesoporous Mat. 2008, 114, 74.  

    19. [19]

      (19) Wen, J. J.; Gu, F. N.;Wei, F.; Zhou, Y.; Lin,W. G.; Yang, J.; Yang, J. Y.;Wang, Y.; Zou, Z. G.; Zhu, J. H. J. Mater. Chem. 2010, 20, 2840.  

    20. [20]

      (20) Ma, L.; Han, K. K.; Ding, X. H.; Chun, Y.; Zhu, J. H. J. Nanosci. Nanotechnol. 2011, 11, 4079.  

    21. [21]

      (21) Beck, J. S.; Vartuli, J. C.; Roth,W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.W.; Olson, D. H.; Sheppard, E.W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.  

    22. [22]

      (22) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.  

    23. [23]

      (23) Liu, J.; Li, C.; Yang, Q.; Yang, J.; Li, C. Langmuir 2007, 23, 7255.  

    24. [24]

      (24) Sun, R. Q.; Zhou, X.; Sun, L. B.;Wu, H.; Chun, Y.; Xu, Q. H. Chem. J. Chin. Univ. 2007, 28, 2333. [孙瑞琴, 周徐, 孙林兵, 吴昊, 淳远, 须沁华. 高等学校化学学报, 2007, 28, 2333.]

    25. [25]

      (25) Hiyoshi, N.; Yo , K.; Yashima, T. Microporous Mesoporous Mat. 2005, 84, 357.  

    26. [26]

      (26) Yan, X.; Zhang, L.; Zhang, Y.; Yang, G.; Yan, Z. Ind. Eng. Chem. Res. 2011, 50, 3220.  

    27. [27]

      (27) Cavenati, S.; Grande, C. A.; Rodrigues, A. E. J. Chem. Eng. Data 2004, 49, 1095.  

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    6. [6]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    7. [7]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    8. [8]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    19. [19]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    20. [20]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(1103)
  • Abstract views(2659)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return