Citation: YANG Fan, LIU Ying-Liang, WANG Jian-Ping. Mid-Infrared Pump-Probe Spectroscopy of Dimeric π-Cyclopentadienyl-dicarbonyliron [CpFe(CO)2]2[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 759-765. doi: 10.3866/PKU.WHXB201202023 shu

Mid-Infrared Pump-Probe Spectroscopy of Dimeric π-Cyclopentadienyl-dicarbonyliron [CpFe(CO)2]2

  • Received Date: 11 November 2011
    Available Online: 2 February 2012

    Fund Project: 国家自然科学基金(20727001) (20727001) 中国科学院知识创新工程(KJCX2-EW-H01) (KJCX2-EW-H01)

  • The structural and vibrational dynamics of the non-bridged C≡O stretching vibrations of two different tautomers of dimeric π-cyclopentadienyldicarbonyliron [CpFe(CO)2]2 in CH2Cl2 were examined using steady-state and femtosecond infrared pump-probe methods at 5-μm wavelength. The two main species in [CpFe(CO)2]2 had a cis:trans molar ratio of 1.7, and showed different vibrational and rotational relaxation dynamics. Both species showed biexponential decay in their two C≡O stretching vibrational excited-state populations, with a fast component (<1 ps) and a slow component (20 ps). The former was believed to be related to the rapid dephasing processes of the coherent state caused by broadband excitation, while the latter was the typical lifetime for the C≡O stretching vibrational excited state. Having a significant permanent dipole, the cis structure could interact strongly with solvent, resulting in relatively slower rotational dynamics. Our work demonstrated that the frequency and vibrational-rotational dynamics of the non-bridged C≡O stretching vibrations were very sensitive to both molecular structures and the solvent.
  • 加载中
    1. [1]

      (1) Cotton, F. A.; Stammreich, H.;Wilkinson, G. J. Inorg. Nucl. Chem. 1959, 9, 3.  

    2. [2]

      (2) Noack, K. J. Inorg. Nucl. Chem. 1963, 25, 1383.  

    3. [3]

      (3) Bryan, R. F.; Greene, P. T.; Newlands, M. J.; Field, D. S. J. Chem. Soc. A 1970, 3068.

    4. [4]

      (4) Bullitt, J. G.; Cotton, F. A.; Marks, T. J. Inorg. Chem. 1972, 11, 671.  

    5. [5]

      (5) Cotton, F. A.; Yagupsky, G. Inorg. Chem. 1967, 6, 15.  

    6. [6]

      (6) Mills, O. Acta Crystallogr. 1958, 11, 620.  

    7. [7]

      (7) Kessler, H. Angew. Chem. Int. Edt. 1970, 9, 219.  

    8. [8]

      (8) Bryan, R. F.; Greene, P. T.; Field, D. S.; Newlands, M. J. J. Chem. Soc. D: Chem. Commun. 1969, 1477.  

    9. [9]

      (9) Bullitt, J. G.; Cotton, F. A.; Marks, T. J. J. Am. Chem. Soc. 1970, 92, 2155.  

    10. [10]

      (10) Anna, J. M.; King, J. T.; Kubarych, K. J. Inorg. Chem. 2011, 50, 9273.

    11. [11]

      (11) Thomas E, B. Coord. Chem. Rev. 2000, 206-207, 419.  

    12. [12]

      (12) George, M.W.; Dougherty, T. P.; Heilweil, E. J. J. Phys. Chem. 1996, 100, 201.  

    13. [13]

      (13) Zhang, S.; Brown, T. L. J. Am. Chem. Soc. 1993, 115, 1779.  

    14. [14]

      (14) Anfinrud, P. A.; Han, C. H.; Lian, T.; Hochstrasser, R. M. J. Phys. Chem. 1991, 95, 574.  

    15. [15]

      (15) Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. J. Am. Chem. Soc. 1989, 111, 4563.  

    16. [16]

      (16) Moore, B. D.; Poliakoff, M.; Turner, J. J. J. Am. Chem. Soc. 1986, 108, 1819.  

    17. [17]

      (17) Dixon, A. J.; Healy, M. A.; Poliakoff, M.; Turner, J. J. J. Chem. Soc. Chem. Commun. 1986, 994.

    18. [18]

      (18) Hooker, R. H.; Mahmoud, K. A.; Rest, A. J. J. Chem. Soc. Chem. Commun. 1983, 1022.

    19. [19]

      (19) Abrahamson, H. B.; Palazzotto, M. C.; Reichel, C. L.;Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 4123.  

    20. [20]

      (20) Tyler, D. R.; Schmidt, M. A.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 6018.  

    21. [21]

      (21) Zanni, M. T.; Gnanakaran, S.; Stenger, J.; Hochstrasser, R. M. J. Phys. Chem. B 2001, 105, 6520.  

    22. [22]

      (22) Khalil, M.; Demirdöven, N.; Tokmakoff, A. J. Phys. Chem. A 2003, 107, 5258.  

    23. [23]

      (23) Wang, J.; Chen, J.; Hochstrasser, R. M. J. Phys. Chem. B 2006, 110, 7545.  

    24. [24]

      (24) Wang. J. Chin. Sci .Bull. 2007, 52, 1221. [王建平. 科学通报 2007, 52, 1221.]

    25. [25]

      (25) Zheng. J. R. Physics 2010, 39, 162. [郑俊荣. 物理2010, 39, 162.]

    26. [26]

      (26) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision B.05; Gaussian, Inc., Pittsburgh PA, 2003.

    27. [27]

      (27) McArdle, P. A.; Manning, A. R. J. Chem. Soc. A 1969, 1498.

    28. [28]

      (28) McArdle, P.; Manning, A. R. J. Chem. Soc. A 1970, 2128.

    29. [29]

      (29) lonzka, O.; Khalil, M.; Demirdöven, N.; Tokmakoff, A. Phys. Rev. Lett. 2001, 86, 2154.  

  • 加载中
    1. [1]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    17. [17]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    18. [18]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    19. [19]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    20. [20]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

Metrics
  • PDF Downloads(789)
  • Abstract views(2234)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return