Citation: NIE Su-Lian, ZHAO Yan-Chun, FAN Jie-Wen, TIAN Jian-Niao, NING Zhen, LI Xiao-Xiao. Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 871-876. doi: 10.3866/PKU.WHXB201202013 shu

Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation

  • Received Date: 19 October 2011
    Available Online: 1 February 2012

    Fund Project: 广西自然科学基金(2010GXNSFF013001, 0728043) (2010GXNSFF013001, 0728043)国家自然科学基金(21163002)资助项目 (21163002)

  • Nano-flocculent-Co3O4 modified multi-walled carbon nanotubes supported Pd nanoparticles (Pd-Co3O4/MWCNTs) with uniform dimensions were prepared by a facile hydrothermal method using Co(NO3)3·6H2O as the cobalt source, polyethylene glycol (PEG) 20000 as a surface active agent, and H2PdCl4 as the Pd precursor. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction. The Pd nanoparticles had a face-centered cubic crystal structure and were well dispersed on the external walls of the Co3O4/MWCNTs. The catalytic activity was studied by cyclic voltammetry and chronoamperometry toward methanol oxidation. The Pd-Co3O4/MWCNT catalysts had a large electrochemically active area, od electrocatalytic performance, and stability toward methanol oxidation in alkaline media. All the results suggest that Co3O4 will improve the electrocatalytic activity in direct methanol fuel cells.
  • 加载中
    1. [1]

      (1) Zhang, Y. G.; Chen, Y. C.;Wang, T. Microporous Mesoporous Mater. 2008, 114 (1-3), 257.

    2. [2]

      (2) Kumar, U.; Shete, A.; Harle, A. S. Chem. Mater. 2008, 20 (4), 1484.

    3. [3]

      (3) Liu, X. H.; Qiu, G. Z.; Li, X. G. Nanotechnology 2005, 16 (12), 3035.

    4. [4]

      (4) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    5. [5]

      (5) Yue,W. B.; Hill, A. H.; Harrison, A.; Zhou,W. Z. Chem. Commun. 2007, No. 24, 2518.

    6. [6]

      (6) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20 (21), 3987.

    7. [7]

      (7) Rumplecker, A.; Kleitz, F.; Salabas, E. L.; Schuth, F. Chem. Mater. 2007, 19 (3), 485.

    8. [8]

      (8) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z.; Qian, Y. T. J. Phys. Chem. B 2004, 108 (42), 16401.

    9. [9]

      (9) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128 (44), 14258.

    10. [10]

      (10) Ardizzone, S.; Spinolo, G.; Trasatti, S. Electrochim. Acta 1995, 40 (16), 2683.

    11. [11]

      (11) Salavati-Niasari, M.; Mir, N.; Davar, F. J. Phys. Chem. Solids 2009, 70 (5), 847.

    12. [12]

      (12) Cao, J. Z.; Zhao, Y. C.; Yang,W.; Tian, J. N.; Guan F.; Ma, Y. J. J. Univ. Sci. Technol. B 2003, 10 (1), 54.

    13. [13]

      (13) Tripathy, S. K.; Christy, M.; Nam-Hee, P.; Suh, E. K.; Anand, S.; Yu, Y. T. Mater. Lett. 2008, 62 (6-7), 1006.

    14. [14]

      (14) Liu, Y.; Mi, C.H.; Su, L.H.; Zhang, X.G. Electrochim. Acta 2008, 53 (5), 2507.

    15. [15]

      (15) Nethravathi, C.; Sen, S.; Ravishankar, N.; Rajamathi, M.; Pietzonka, C.; Harbrecht, B. J. Phys. Chem. B 2005, 109 (23), 11468.

    16. [16]

      (16) Sun, L. N.; Li, H. F.; Ren, L.; Hu, C.W. Solid State Sci. 2009, 11 (1), 108.

    17. [17]

      (17) Bahlawane, N.; Rivera, E. F.; Kohse-Höinghaus, K.; Brechling, A.; Kleineberg, U. Appl. Catal. B 2004, 53 (4), 245.

    18. [18]

      (18) Jiang, Y.;Wu, Y.; Xie, B.; Qian, Y. T. Mater. Chem. Phys. 2002, 74 (2), 234.

    19. [19]

      (19) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    20. [20]

      (20) Qiu, C.; Shang, R.; Xie, Y.; Bu, Y.; Li, C.; Ma, H. Mater. Chem. Phys. 2010, 120 (2-3), 323.

    21. [21]

      (21) Zhao, X. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Acta Phys. -Chim. Sin. 2011, 27 (1), 91. [赵彦春, 占璐, 田建袅, 聂素连, 宁珍. 物理化学学报, 2011, 27 (1), 91.]

    22. [22]

      (22) Jiang, D. E.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13 (3), 978.

    23. [23]

      (23) Niu, B.; Man, L. Y.; Qi, E. L.;Wang, J. Q. J.Chin.Ceram.Soc. 2011, 39 (5), 758. [牛锛, 满丽莹, 齐恩磊, 王介强. 硅酸盐学报, 2011, 39 (5), 758.]

    24. [24]

      (24) Shen, P. K.; Xu, C.W. Electrochem. Commun. 2006, 8 (1), 184.

    25. [25]

      (25) Xu, C.W.; Shen, P. K.; Liu, Y. L. J. Power Sources 2007, 164 (2), 527.

    26. [26]

      (26) Xu, M.W.; Gao, G. Y.; Zhou,W. J.; Zhang, K. F.; Li, H. L. J. Power Sources 2008, 175 (1), 217.

    27. [27]

      (27) Zhang, K. F.; Guo, D. J.; Liu, X.; Li, J.; Li, H. L.; Su, Z. X. J. Power Sources 2006, 162 (2), 1077.

    28. [28]

      (28) Prabhuram, J.; Zhao, T. S.; Tang, Z. K. J. Phys. Chem. B 2006, 110 (11), 5245.

    29. [29]

      (29) Huang, K. L.; Liu, R. S.; Yang, R. P. Acta Phys.-Chim.Sin. 2007, 23 (5), 655. [黄可龙, 刘人生, 杨幼平等. 物理化学学报, 2007, 23 (5), 655.]

    30. [30]

      (30) Singh, R. N.; Singh, A.; Anindita. Carbon 2009, 47 (1), 271.

    31. [31]

      (31) Zhao, Y. C.; Yang, X. L.; Tian, J. N.;Wang, F. Y.; Zhan, L. Int. J. Hydrog. Energy 2010, 35 (8), 3249.

    32. [32]

      (32) Zeng,W.W.; Huang, K. L.; Yang, R. P. Acta Phys. -Chim. Sin. 2008, 24 (2), 263. [曾雯雯, 黄可龙, 杨幼平等. 物理化学学报, 2008, 24 (2), 263.]

    33. [33]

      (33) Wu,W.;Wang, Y. G.; Li, F. Acta Chim. Sin. 2009, 67 (3), 208. [吴雯, 王永刚, 李峰等. 化学学报, 2009, 67 (3), 208.]

    34. [34]

      (34) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Li, H. L. Electrochem. Commun. 2009, 11 (3), 557.

    35. [35]

      (35) Singh, R. N.; Singh, A.; Anindita. Int. J. Hydrog. Energy 2009, 34 (4), 2052.

    36. [36]

      (36) Vidakovic, T.; Christov, M.; Sundmacher, K. Electrochim. Acta 2007, 52 (18), 5606.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    8. [8]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    12. [12]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(1008)
  • Abstract views(2526)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return