Citation: NIE Su-Lian, ZHAO Yan-Chun, FAN Jie-Wen, TIAN Jian-Niao, NING Zhen, LI Xiao-Xiao. Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 871-876. doi: 10.3866/PKU.WHXB201202013 shu

Highly Active Pd-Co3O4/MWCNTs Catalysts for Methanol Electrocatalytic Oxidation

  • Received Date: 19 October 2011
    Available Online: 1 February 2012

    Fund Project: 广西自然科学基金(2010GXNSFF013001, 0728043) (2010GXNSFF013001, 0728043)国家自然科学基金(21163002)资助项目 (21163002)

  • Nano-flocculent-Co3O4 modified multi-walled carbon nanotubes supported Pd nanoparticles (Pd-Co3O4/MWCNTs) with uniform dimensions were prepared by a facile hydrothermal method using Co(NO3)3·6H2O as the cobalt source, polyethylene glycol (PEG) 20000 as a surface active agent, and H2PdCl4 as the Pd precursor. The catalysts were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction. The Pd nanoparticles had a face-centered cubic crystal structure and were well dispersed on the external walls of the Co3O4/MWCNTs. The catalytic activity was studied by cyclic voltammetry and chronoamperometry toward methanol oxidation. The Pd-Co3O4/MWCNT catalysts had a large electrochemically active area, od electrocatalytic performance, and stability toward methanol oxidation in alkaline media. All the results suggest that Co3O4 will improve the electrocatalytic activity in direct methanol fuel cells.
  • 加载中
    1. [1]

      (1) Zhang, Y. G.; Chen, Y. C.;Wang, T. Microporous Mesoporous Mater. 2008, 114 (1-3), 257.

    2. [2]

      (2) Kumar, U.; Shete, A.; Harle, A. S. Chem. Mater. 2008, 20 (4), 1484.

    3. [3]

      (3) Liu, X. H.; Qiu, G. Z.; Li, X. G. Nanotechnology 2005, 16 (12), 3035.

    4. [4]

      (4) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    5. [5]

      (5) Yue,W. B.; Hill, A. H.; Harrison, A.; Zhou,W. Z. Chem. Commun. 2007, No. 24, 2518.

    6. [6]

      (6) Lou, X.W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20 (21), 3987.

    7. [7]

      (7) Rumplecker, A.; Kleitz, F.; Salabas, E. L.; Schuth, F. Chem. Mater. 2007, 19 (3), 485.

    8. [8]

      (8) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z.; Qian, Y. T. J. Phys. Chem. B 2004, 108 (42), 16401.

    9. [9]

      (9) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128 (44), 14258.

    10. [10]

      (10) Ardizzone, S.; Spinolo, G.; Trasatti, S. Electrochim. Acta 1995, 40 (16), 2683.

    11. [11]

      (11) Salavati-Niasari, M.; Mir, N.; Davar, F. J. Phys. Chem. Solids 2009, 70 (5), 847.

    12. [12]

      (12) Cao, J. Z.; Zhao, Y. C.; Yang,W.; Tian, J. N.; Guan F.; Ma, Y. J. J. Univ. Sci. Technol. B 2003, 10 (1), 54.

    13. [13]

      (13) Tripathy, S. K.; Christy, M.; Nam-Hee, P.; Suh, E. K.; Anand, S.; Yu, Y. T. Mater. Lett. 2008, 62 (6-7), 1006.

    14. [14]

      (14) Liu, Y.; Mi, C.H.; Su, L.H.; Zhang, X.G. Electrochim. Acta 2008, 53 (5), 2507.

    15. [15]

      (15) Nethravathi, C.; Sen, S.; Ravishankar, N.; Rajamathi, M.; Pietzonka, C.; Harbrecht, B. J. Phys. Chem. B 2005, 109 (23), 11468.

    16. [16]

      (16) Sun, L. N.; Li, H. F.; Ren, L.; Hu, C.W. Solid State Sci. 2009, 11 (1), 108.

    17. [17]

      (17) Bahlawane, N.; Rivera, E. F.; Kohse-Höinghaus, K.; Brechling, A.; Kleineberg, U. Appl. Catal. B 2004, 53 (4), 245.

    18. [18]

      (18) Jiang, Y.;Wu, Y.; Xie, B.; Qian, Y. T. Mater. Chem. Phys. 2002, 74 (2), 234.

    19. [19]

      (19) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15 (5), 851.

    20. [20]

      (20) Qiu, C.; Shang, R.; Xie, Y.; Bu, Y.; Li, C.; Ma, H. Mater. Chem. Phys. 2010, 120 (2-3), 323.

    21. [21]

      (21) Zhao, X. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Acta Phys. -Chim. Sin. 2011, 27 (1), 91. [赵彦春, 占璐, 田建袅, 聂素连, 宁珍. 物理化学学报, 2011, 27 (1), 91.]

    22. [22]

      (22) Jiang, D. E.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13 (3), 978.

    23. [23]

      (23) Niu, B.; Man, L. Y.; Qi, E. L.;Wang, J. Q. J.Chin.Ceram.Soc. 2011, 39 (5), 758. [牛锛, 满丽莹, 齐恩磊, 王介强. 硅酸盐学报, 2011, 39 (5), 758.]

    24. [24]

      (24) Shen, P. K.; Xu, C.W. Electrochem. Commun. 2006, 8 (1), 184.

    25. [25]

      (25) Xu, C.W.; Shen, P. K.; Liu, Y. L. J. Power Sources 2007, 164 (2), 527.

    26. [26]

      (26) Xu, M.W.; Gao, G. Y.; Zhou,W. J.; Zhang, K. F.; Li, H. L. J. Power Sources 2008, 175 (1), 217.

    27. [27]

      (27) Zhang, K. F.; Guo, D. J.; Liu, X.; Li, J.; Li, H. L.; Su, Z. X. J. Power Sources 2006, 162 (2), 1077.

    28. [28]

      (28) Prabhuram, J.; Zhao, T. S.; Tang, Z. K. J. Phys. Chem. B 2006, 110 (11), 5245.

    29. [29]

      (29) Huang, K. L.; Liu, R. S.; Yang, R. P. Acta Phys.-Chim.Sin. 2007, 23 (5), 655. [黄可龙, 刘人生, 杨幼平等. 物理化学学报, 2007, 23 (5), 655.]

    30. [30]

      (30) Singh, R. N.; Singh, A.; Anindita. Carbon 2009, 47 (1), 271.

    31. [31]

      (31) Zhao, Y. C.; Yang, X. L.; Tian, J. N.;Wang, F. Y.; Zhan, L. Int. J. Hydrog. Energy 2010, 35 (8), 3249.

    32. [32]

      (32) Zeng,W.W.; Huang, K. L.; Yang, R. P. Acta Phys. -Chim. Sin. 2008, 24 (2), 263. [曾雯雯, 黄可龙, 杨幼平等. 物理化学学报, 2008, 24 (2), 263.]

    33. [33]

      (33) Wu,W.;Wang, Y. G.; Li, F. Acta Chim. Sin. 2009, 67 (3), 208. [吴雯, 王永刚, 李峰等. 化学学报, 2009, 67 (3), 208.]

    34. [34]

      (34) Sun, Z. P.; Zhang, X. G.; Liang, Y. Y.; Li, H. L. Electrochem. Commun. 2009, 11 (3), 557.

    35. [35]

      (35) Singh, R. N.; Singh, A.; Anindita. Int. J. Hydrog. Energy 2009, 34 (4), 2052.

    36. [36]

      (36) Vidakovic, T.; Christov, M.; Sundmacher, K. Electrochim. Acta 2007, 52 (18), 5606.

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    7. [7]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    12. [12]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    13. [13]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    19. [19]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(1008)
  • Abstract views(2560)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return