Citation: SUN Xiang-Ting, ZHANG Dong-Ju, FENG Da-Cheng, LIU Cheng-Bu. Asymmetric Michael Addition between Nitroolefins and Sulfur Ylides Catalyzed by a Thiourea Organocatalyst[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 561-566. doi: 10.3866/PKU.WHXB201201112 shu

Asymmetric Michael Addition between Nitroolefins and Sulfur Ylides Catalyzed by a Thiourea Organocatalyst

  • Received Date: 5 December 2011
    Available Online: 11 January 2012

    Fund Project: 国家自然科学基金(20873076) (20873076)教育部博士点基金(200804220009)资助项目 (200804220009)

  • Using density functional theory calculations, we have studied the 1-(2-chlorophenyl)-2-thiourea catalyzed reaction of nitrostyrene with a typical sulfur ylide to understand the Michael addition mechanism. Transition state structures for the C―C bond-forming step controlling the stereoselectivity of the reaction have been identified and their relative stabilities evaluated. The role of the catalyst in the reaction has also been determined. The calculated results show that the formation of the anti-product is energetically more favorable than that of the syn-product. Furthermore, the catalyst (proton donor) promotes the reaction by forming a double hydrogen-bonded complex with nitrostyrene (proton acceptor), where the charge transfer between the donor and acceptor increases the eletrophilicity of β-C atom of the nitrostyrene, favoring the nucleophilic attack of the sulfur ylide.
  • 加载中
    1. [1]

      (1) Brown, S. P.; odwin, N. C.; MacMillan, D.W. C. J. Am. Chem. Soc. 2003, 125, 1192.  

    2. [2]

      (2) Enders, D.; Seki, A. Synlett. 2002, 26.

    3. [3]

      (3) Andrey, O.; Alexakis, A; Bernardinelli, G. Org Lett. 2003, 5, 2559.  

    4. [4]

      (4) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem. Soc. 2004, 126, 9558.  

    5. [5]

      (5) List, B.; Prjarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423.  

    6. [6]

      (6) Okino, T.; Hoashi, Y.; Furukawa, T.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.  

    7. [7]

      (7) Alexakis, A.; Andrey, O. Org. Lett. 2002, 4, 3611.  

    8. [8]

      (8) Betancort, J. M.; Barbas, C. F. Org. Lett. 2001, 3, 3737.  

    9. [9]

      (9) Lu, L. Q.; Cao, Y. J.; Liu, X. P.; An, J.; Yao, C. J.; Ming, Z. H.; Xiao,W. J. J. Am. Chem. Soc. 2008, 130, 6946.  

    10. [10]

      (10) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299.  

    11. [11]

      (11) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270.  

    12. [12]

      (12) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision D.01; Gaussian Inc.:Wallingford, CT, 2004.

    13. [13]

      (13) Fu, A. P.; Li, H. L.; Yuan, S. P.; Si, H. Z.; Duan, Y. B. J. Org. Chem. 2008, 73, 5264.  

    14. [14]

      (14) Fu, A. P.; Li, H. L.; Tian, F. H.; Yuan, S. P.; Si, H. Z.; Duan, Y. B. Tetrahedron: Asymmetry 2008, 19, 1288

    15. [15]

      (15) Zheng,W. R.; Xu, L. J.; Huang, T.; Yang, Q.; Chen, Z. C. Res. Chem. Intermed. 2011, 37, 31.  

    16. [16]

      (16) Zheng,W. R.; Fu, Y.; Shen, K.; Liu, L.; Guo, Q. X. J. Mol. Struct: Theochem 2007, 822, 103.  

    17. [17]

      (17) Zheng,W. R.; Fu, Y.; Liu, L.; Guo, Q. X. Acta Physico-Chimica Sinica 2007, 23, 1018. [郑文锐, 傅尧, 刘磊, 郭庆祥. 物理化学学报, 2007, 23, 1018.]  

    18. [18]

      (18) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem. Int. Edit. 2005, 44, 4032.  

    19. [19]

      (19) Xu, X.; Yabuta, T.; Yuan, P.; Takemoto, Y. Synlett 2006, 136.

    20. [20]

      (20) Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y. Chem. Eur. J. 2006, 12, 466.  

    21. [21]

      (21) Li, Q.; Huang, F. Q. Acta Physico-Chimica Sinica 2005, 21, 52. [李权, 黄方千. 物理化学学报, 2005, 21, 52.]

    22. [22]

      (22) Tan, B.; Zeng, X. F.; Lu, Y. P.; Chua, P. J.; Zhong, G. F. Org. Lett. 2009, 11, 1927.  

    23. [23]

      (23) Lu, N.; Meng, L.; Chen, D. Z.; Zhang, G. Q. J. Phys. Chem. A. Articles ASAP.

    24. [24]

      (24) Yang, H.;Wong, M.W. J. Org. Chem. 2011, 76, 7399.  

    25. [25]

      (25) Marju, L.; Kerti, A.; Merle, U.; Toomas, T.; Tonis, K.; Margus, L. J. Org. Chem. 2009, 74, 3722.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    14. [14]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    17. [17]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    18. [18]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    19. [19]

      Yang Lei Jieqiong Cai Daming Sun Caihong Tao . Exploration and Practice of Integrating Moral Education with Engineering Talent Development in the Instruction of “Principles of Chemical Engineering”. University Chemistry, 2025, 40(3): 230-236. doi: 10.12461/PKU.DXHX202406071

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(915)
  • Abstract views(3277)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return