Citation: CHEN Zhan. Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 504-521. doi: 10.3866/PKU.WHXB201201091 shu

Molecular Structures of Buried Polymer Interfaces and Biological Interfaces Detected by Sum Frequency Generation Vibrational Spectroscopy

  • Received Date: 14 November 2011
    Available Online: 9 January 2012

  • Molecular structures at interfaces determine interfacial properties. In order to optimize the interfacial structures to achieve improved properties of advanced materials, it is important to characterize molecular structures of interfaces in situ in real time. Recently, a nonlinear optical spectroscopic technique, sum frequency generation (SFG) vibrational spectroscopy, has been developed into a powerful and unique tool to elucidate molecular structures of buried interfaces, including liquid/liquid, solid/liquid, and solid/solid interfaces. In this review, applications of SFG to study molecular structures of complex interfaces such as polymer interfaces and biological interfaces have been discussed. Particularly, molecular surface structural changes of various polymers in water, molecular interactions between polymers and silane model adhesion promoters at interfaces, and structures of buried polymer/polymer as well as polymer/metal interfaces have been presented. In addition, interfacial structures of peptides with varied secondary structures and several representative proteins have been introduced. Interfaces play important roles in many disciplines ranging from chemistry, biology, physics, materials science and engineering, to nanotechnology. The development of a unique technique which can probe molecular structures of complex interfaces in situ greatly impacts the research in these disciplines as well as many interdisciplinary studies.
  • 加载中
    1. [1]

      (1) Woodruff, D.; Delchar, T. Modern Techniques of Surface Science; Cambridge Univ. Press: Cambridge, 1986.

    2. [2]

      (2) Somorjai, G. A. Introduction to Surface Chemistry and Catalysis;Wiley: New York, 1994.

    3. [3]

      (3) Shen, Y. R. The Principles of Nonlinear Optics;Wiley: New York, 1984.

    4. [4]

      (4) Chen, Z.; Shen, Y. R.; Somorjai, G. A. Ann. Rev. Phys. Chem. 2002, 53, 437.  

    5. [5]

      (5) Chen, C. Y.; Liu,W. T.; Pagliusi, P.; Shen, Y. R. Macromolecules 2009, 42, 2122.  

    6. [6]

      (6) Rao, Y.; Comstock, M.; Eisenthal, K. B. J. Phys. Chem. B 2006, 110, 1727.  

    7. [7]

      (7) Moore, F. G.; Richmond, G. L. Accounts Chem. Res. 2008, 41, 739.  

    8. [8]

      (8) Chen, Z.; Gracias, D. H.; Somorjai, G. A. Appl. Phys. B 1999, 68, 549.  

    9. [9]

      (9) Gracias, D. H.; Chen, Z.; Shen, Y. R.; Somorjai, G. A. Accounts Chem. Res. 1999, 320, 930.

    10. [10]

      (10) Shultz, M. J.; Schnitzer, C.; Simonelli, D.; Baldelli, S. Int. Rev. Phys. Chem. 2000, 19, 123.  

    11. [11]

      (11) palakrishnan, D.; Liu, D. F.; Allen, H. C.; Kuo, M.; Shultz, M. J. Chem. Rev. 2006, 106, 1155.  

    12. [12]

      (12) Kim, J.; Cremer, P. S. J. Am. Chem. Soc. 2000, 122, 12371.  

    13. [13]

      (13) Briggman, K. A.; Stephenson, J. C.;Wallace,W. E.; Richter, L. J. J. Phys. Chem. B 2001, 105, 2785.  

    14. [14]

      (14) Gautam, K. S.; Schwab, A. D.; Dhinojwala, A.; Zhang, D.; Dougai, S. M.; Yeganeh, M. S. Phys. Rev. Lett. 2000, 85, 3854.  

    15. [15]

      (15) Baldelli, S. J. Phys. Chem. B 2003, 107, 6148.  

    16. [16]

      (16) Xu, M.; Spinney, R.; Allen, H. C. J. Phys. Chem. B 2009, 113, 4102.  

    17. [17]

      (17) Liu, J.; Conboy, J. C. J. Am. Chem. Soc. 2004, 126, 8894.  

    18. [18]

      (18) Ye, H. K.; Gu, Z. Y.; Gracias, D. H. Langmuir 2006, 22, 1863.  

    19. [19]

      (19) Jayathilake, H. D.; Zhu, M. H.; Rosenblatt, C.; Bordenyuk, A. N.;Weeraman, C.; Benderskii, A. V. J. Chem. Phys. 2006, 125, 064706.  

    20. [20]

      (20) Stokes, G. Y.; Buchbinder, A. M.; Gibbs-Davis, J. M.; Scheidt, K. M.; Geiger, F. M. J. Phys. Chem. A 2008, 112, 11688.

    21. [21]

      (21) Esenturk, O.;Walker, R. A. Chem. Phys. 2006, 125, 174701.

    22. [22]

      (22) Perry, A.; Neipert, C.; Space, B.; Moore, P. B. Chem. Rev. 2006, 106, 1234.  

    23. [23]

      (23) Li, Q. F.; Hua, R.; Cheah, I. J.; Chou, K. C. J. Phys. Chem. B 2008, 112, 694.  

    24. [24]

      (24) Li, Q. F.; Hua, R.; Chou, K. C. J. Phys. Chem. B 2008, 112, 2315.  

    25. [25]

      (25) McGall, S. J.; Davies, P. B.; Neivandt, D. J. J. Phys. Chem. A 2005, 109, 8745.  

    26. [26]

      (26) Chen, P.; Kung, K. Y.; Shen, Y. R.; Somorjai, G. A. Surf. Sci. 2001, 494, 289.  

    27. [27]

      (27) Chen, Z. Poly. Inter. 2006, 56, 577.

    28. [28]

      (28) Chen, X.; Chen, Z. Biochim. Biophys. Acta 2006, 1758, 1257.  

    29. [29]

      (29) Ye, S.; Nguyen, K.; Le Clair, S. V.; Chen, Z. J. Struct. Biol. 2009, 168, 61.  

    30. [30]

      (30) Le Clair, S. V.; Nguyen, K.; Chen, Z. J. Adhesion 2009, 85, 484.

    31. [31]

      (31) Chen, Z. Prog. Polym. Sci 2010, 35, 1376.

    32. [32]

      (32) Wang, J.;Woodcock, S. E.; Buck, S. M.; Chen, C.; Chen, Z. J. Am. Chem. Soc. 2001, 123, 9470.  

    33. [33]

      (33) Wang, J.; Chen, C.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2001, 105, 12118.  

    34. [34]

      (34) Ratner, B. D.; Castner, D. G. Surface Modification of Polymeric Biomaterials; Plenum Press: New York, 1996.

    35. [35]

      (35) Krishnan, S.;Weinman, C. J.; Ober, C. K. J. Mater. Chem. 2008, 18, 3405.  

    36. [36]

      (36) Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Prog. Org. Coat. 2004, 50, 75.  

    37. [37]

      (37) Yoda, R. J. Biomater. Sci. -Polym. Ed. 1998, 9, 561.  

    38. [38]

      (38) Chambers, L. D.; Stokes, K. R.;Walsh, F. C.;Wood, R. J. K. Surf. Coat. Technol. 2006, 201, 3642.  

    39. [39]

      (39) Hron, P. Polym. Inter. 2003, 52, 1531.  

    40. [40]

      (40) Ruckenstein, E.; urisankar, S. V. J. Colloid Interface Sci. 1986, 109, 557.  

    41. [41]

      (41) Yasuda, H.; Charlson, E. J.; Charlson, E. M.; Yasuda, T.; Miyama, M.; Okuno, T. Langmuir 1991, 7, 2394.  

    42. [42]

      (42) Yasuda, T.; Okuno, T.; Yasuda, H. Langmuir 1994, 10, 2435.  

    43. [43]

      (43) Hogt, A. H.; Gre nis, D. E.; Andrade, J. D.; Kim, S.W.; Dankert, J.; Feijen, J. J. Colloid Interface Sci. 1985, 106, 289.  

    44. [44]

      (44) Lewis, K. B.; Ratner, B. D. J. Colloid Interface Sci. 1993, 159, 77.  

    45. [45]

      (45) Zhang, D.;Ward, R. S.; Shen, Y. R.; Somorjai, G. A. J. Phys. Chem. B 1997, 101, 9060.  

    46. [46]

      (46) Wang, J.; Paszti, Z.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124, 7016.  

    47. [47]

      (47) Chen, C. Y.; Clarke, M. L.;Wang, J.; Chen, Z. Phys. Chem. Chem. Phys. 2005, 7, 2357.

    48. [48]

      (48) Clarke, M. L.; Chen, C.;Wang, J.; Chen, Z. Langmuir 2006, 22, 8800.  

    49. [49]

      (49) Lu, X.; Clarke, M. L.; Li, D.;Wang, X.; Xue, G.; Chen, Z. J. Phys. Chem. C 2011, 115, 13759.  

    50. [50]

      (50) Woodcock, S. E.; Chen, C.; Chen, Z. Langmuir 2004, 20, 1928.  

    51. [51]

      (51) Kristalyn, C. B.; Lu, X.;Weinman, C. J.; Ober, C. K.; Kramer, E. J.; Chen, Z. Langmuir 2010, 26, 11337.  

    52. [52]

      (52) Chen, C.;Wang, J.; Chen, Z. Langmuir 2004, 20, 10186.  

    53. [53]

      (53) Ye, S.; Majumdar, P.; Chisholm, B.; Stafslien, S.; Chen, Z. Langmuir 2010, 26, 16455.

    54. [54]

      (54) Chen, S. F.; Li, L. Y.; Zhao, C.; Zheng, J. Polymer 2010, 51, 5283.

    55. [55]

      (55) Jiang, S.; Cao, Z. Q. Adv. Mater. 2010, 22, 920.

    56. [56]

      (56) Zhang, Z.; Finlay, J. A.;Wang, L. F.; Gao, Y.; Callow, J. A.; Callow, M. E.; Jiang, S. Langmuir 2009, 25, 13516.  

    57. [57]

      (57) Shi, Q.; Ye, S.; Spanninga, S. A.; Su, Y.; Jiang, Z.; Chen, Z. Soft Matter 2009, 5, 3487.

    58. [58]

      (58) Chen, C.; Loch, C. L.;Wang, J.; Chen, Z. J. Phys. Chem. B 2003, 107, 10440.  

    59. [59]

      (59) Chen, C.;Wang, J.; Loch, C. L.; Ahn, D.; Chen, Z. J. Am. Chem. Soc. 2004, 126, 1174.  

    60. [60]

      (60) Loch, C. L.; Ahn, D.; Vázquez, A. V.; Chen, Z. J. Colloid Interface Sci. 2007, 308, 170.  

    61. [61]

      (61) Loch, C. L.; Ahn, D.;Wang, J.; Chen, C.; Chen, Z. Langmuir 2004, 20, 5467.  

    62. [62]

      (62) Loch, C. L.; Ahn, D.; Chen, C.; Chen, Z. J. Adhesion 2005, 81, 319.  

    63. [63]

      (63) Loch, C. L.; Ahn, D.; Chen, Z. J. Phys. Chem. B 2006, 110, 914.  

    64. [64]

      (64) Vázquez, A. V.; Shephard, N. E.; Steinecker, C. L.; Ahn, D.; Spanninga, S.; Chen, Z. J. Colloid Interface Sci. 2009, 331, 408.  

    65. [65]

      (65) Mine, K.; Nishio, M.; Sumimura, S. US Patent 4,033,924, 1977-07-05.

    66. [66]

      (66) Schulz, J. B. US Patent 4,087,585, 1978-05-02.

    67. [67]

      (67) Chen, C.;Wang, J.; Even, M. A.; Chen, Z. Macromolecules 2002, 35, 8093.  

    68. [68]

      (68) Lu, X.; Shephard, N.; Han, J.; Xue, G.; Chen, Z. Macromolecules 2008, 41, 8770.  

    69. [69]

      (69) Lu, X.; Li, D.; Kristalyn, C. B.; Han, J.; Shephard, N.; Rhodes, S.; Xue, G.; Chen, Z. Macromolecules 2009, 42, 9052.  

    70. [70]

      (70) Harp, G. P.; Rangwalla, H.; Li, G.; Yeganeh, M. S.; Dhinojwala, A. Macromolecules 2006, 39, 7464.  

    71. [71]

      (71) Li, G.; Dhinojwala, A.; Yeganeh, M. S. J. Phys. Chem. B 2009, 113, 2739.  

    72. [72]

      (72) Yurdumakan, B.; Nanjundiah, K.; Dhinojwala, A. J. Phys. Chem. C 2007, 111, 960.  

    73. [73]

      (73) Wilson, P. T.; Briggman, K. A.;Wallace,W. E.; Stephenson, J. C.; Richter, L. J. Appl. Phys. Lett. 2002, 80, 3084.  

    74. [74]

      (74) Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A. Langmuir 2005, 21, 3647.  

    75. [75]

      (75) Morita, S.; Ye, S.; Li, G.; Osawa, M. Vib. Spectr. 2004, 35, 15.  

    76. [76]

      (76) Ye, S.; Morita, S.; Li, G.; Noda, H.; Tanaka, M.; Uosaki, K.; Osawa, M. Macromolecules 2003, 36, 5694.  

    77. [77]

      (77) Kweskin, S. J.; Komvopoulos, K.; Somorjai, G. A. Appl. Phys. Lett. 2006, 88, 134105.  

    78. [78]

      (78) Chen, Z.;Ward, R.; Tian, Y.; Malizia, F.; Gracias, D. H.; Shen, Y. R.; Somorjai, G. A. J. Biomed. Mater. Res. 2002, 62, 254.  

    79. [79]

      (79) Mermut, O.; Phillips, D. C.; York, R. L.; McCrea, K. R.;Ward, R. S.; Somorjai, G. A. J. Am. Chem. Soc. 2006, 128, 3598.  

    80. [80]

      (80) Phillips, D. C.; York, R. L.; Mermut, O.; McCrea, K. R.;Ward, R. S.; Somorjai, G. A. J. Phys. Chem. C 2007, 111, 255.  

    81. [81]

      (81) York, R. L.; Browne,W. K.; Geissler, P. L.; Somorjai, G. A. Isr. J. Chem. 2007, 47, 51.  

    82. [82]

      (82) Weidner, T.; Apte, J. S.; Gamble, L. J.; Castner, D. G. Langmuir 2010, 26, 3433.  

    83. [83]

      (83) Weidner, T.; Breen, N. F.; Li, K.; Drohny, G. P.; Castner, D. G. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 13288.  

    84. [84]

      (84) Fu, L.; Ma, G.; Yan, E. C. J. Am. Chem. Soc. 2010, 132, 5405.  

    85. [85]

      (85) Jung, S.,Y.; Lim, S. M.; Albertorio, F.; Kim, G.; Gurau, M. C.; Yang, R. D.; Holden, M. A.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 12782.  

    86. [86]

      (86) Chen, X.; Sagle, L. B.; Cremer, P. S. J. Am. Chem. Soc. 2007, 129, 15104.  

    87. [87]

      (87) Hall, S. A.; Jena, K. C.; Trudeau, T. G.; Hore, D. K. J. Phys. Chem. C 2011, 115, 11216.

    88. [88]

      (88) Wang, J.; Buck, S. M.; Chen, Z. Analyst 2003, 128, 773.  

    89. [89]

      (89) Wang, J.; Buck, S. M.; Even, M. A.; Chen, Z. J. Am. Chem. Soc. 2002, 124, 13302.  

    90. [90]

      (90) Wang, J.; Buck, S. M.; Chen, Z. J. Phys. Chem. B 2002, 106, 11666.  

    91. [91]

      (91) Wang, J.; Clarke, M. L.; Zhang, Y.; Chen, X. Langmuir 2003, 19, 7862.  

    92. [92]

      (92) Wang, J.; Clarke, M. L.; Chen, X.; Even, M. A.; Johnson,W. C.; Chen, Z. Surf. Sci. 2005, 587, 1.  

    93. [93]

      (93) Chen, X.; Clarke, M. L.;Wang, J.; Chen, Z. Intern. J. Mod. Phys. B 2005, 19, 691.  

    94. [94]

      (94) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12169.  

    95. [95]

      (95) Nguyen, K. T.; King, J. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 8291.  

    96. [96]

      (96) Wang, J.; Lee, S. H.; Chen, Z. J. Phys. Chem. B 2008, 112, 2281.  

    97. [97]

      (97) Lee, S.;Wang, J.; Krimm, S.; Chen, Z. J. Phys. Chem. A 2006, 110, 7035.  

    98. [98]

      (98) Chen, X.;Wang, J.; Boughton, A. P.; Kristalyn, C. B.; Chen, Z. J . Am. Chem. Soc. 2007, 129, 1420.  

    99. [99]

      (99) Wang, J.; Chen, X.; Clarke, M. L.; Chen, Z. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4978.  

    100. [100]

      (100) Krimm, S.; Bandekar, J. Adv. Protein Chem. 1986, 38, 181.  

    101. [101]

      (101) Barth, A.; Zscherp, C. Q. Rev. Biophys. 2002, 35, 369.  

    102. [102]

      (102) Tamm, L. K.; Tatulian, S. A. Q. Rev. Biophys. 1997, 30,365.  

    103. [103]

      (103) Wang, J.; Even, M. A.; Chen, X.; Schmaier, A. H.;Waite, J. H.; Chen, Z. J. Am. Chem. Soc. 2003, 125, 9914

    104. [104]

      (104) Chen, X.;Wang, J.; Sniadecki, J. J.; Even, M. A.; Chen, Z. Langmuir 2005, 21, 2662

    105. [105]

      (105) Lad, M. D.; Birembaut, F.; Clifton, L. A.; Frazier, R. A.; Webster, J. R. P.; Green, R. J. Biophys. J. 2007, 92, 3575.  

    106. [106]

      (106) Ludtke, S.; He, K.; Heller,W.; Harroun, T.; Yang, L.; Huang, H. Biochemistry 1996, 35, 13723.  

    107. [107]

      (107) Chen, F. Y.; Lee, M. T.; Huang, H.W. Biophys. J. 2003, 84, 3751.  

    108. [108]

      (108) Ludtke, S.; He, K.; Huang, H. Biochemistry 1995, 35, 16764.

    109. [109]

      (109) Imura, Y.; Choda, N.; Matsuzaki, K. Biophys. J. 2008, 95, 5757.  

    110. [110]

      (110) Boughton, A. P.; Andricioaei, I.; Chen, Z. Langmuir 2010, 26, 16031.  

    111. [111]

      (111) Mecke, A.; Lee, D. K.; Ramamoorthy, A.; Orr, B. G.; BanaszakHoll, M. M. Biophys. J. 2005, 89, 4043.  

    112. [112]

      (112) Gre ry, S. M.; Pokorny, A.; Almeida, P. F. F. Biophys. J. 2009, 96, 116.  

    113. [113]

      (113) Nguyen, K. T.; Le Clair, S. V.; Ye, S.; Chen, Z. J. Phys. Chem. B 2009, 113, 12358.  

    114. [114]

      (114) Murzyn, K.; Pasenkiewicz-Gierula, M. J. Mol. Model. 2003, 9, 217.  

    115. [115]

      (115) Yang, P.; Ramamoorthy, A.; Chen, Z. Langmuir 2011, 27, 7760.  

    116. [116]

      (116) Hallock, K. J.; Lee, D.; Ramamoorthy, A. Biophys. J. 2003, 84, 3052.  

    117. [117]

      (117) Dempsey, C. E. Biochim. Biophys. Acta 1990, 1031, 143.

    118. [118]

      (118) Wang, J.; Paszti, Z.; Clarke, M. L.; Chen, X.; Chen, Z. J. Phys. Chem. B 2007, 111, 6088.  

    119. [119]

      (119) Nguyen, K.; Soong,T.; Im, S.;Waskell, L.; Ramamoorthy, A.; Chen, Z. J. Am. Chem. Soc., 2010, 132, 15112.

    120. [120]

      (120) Renthal, R. Cell Mol. Life Sci. 2010, 67, 1077.  

    121. [121]

      (121) Colombo, S. F.; Longhi, R.; Borgese, N. J. Cell Sci. 2009, 122, 2383.  

    122. [122]

      (122) Dürr, U. H. N.; Ramamoorthy, A.;Waskell, L. Biochim. Biophys. Acta 2007, 1768, 3235.  

    123. [123]

      (123) Neves, S. R.; Ram, P. T.; Iyengar, R. Science 2002, 296, 1636.  

    124. [124]

      (124) Cabrera-Vera, T. M.; Vanhauwe, J.; Thomas, T. O.; Medkova, M.; Preininger, A.; Mazzoni, M. R.; Hamm, H. E. Endocr. Rev. 2003, 24, 765.  

    125. [125]

      (125) Chen, X.; Boughton, A. P.; Tesmer, J. J. G.; Chen, Z. J. Am. Chem. Soc. 2007, 129, 12658.  

    126. [126]

      (126) Boughton, A. P.; Yang, P.; Tesmer, V. M.; Ding, B.; Tesmer, J. J. G.; Chen, Z. Proc. Natl. Acad. Sci . U. S. A. 2011, 108, E667.

    127. [127]

      (127) Clarke, M. L.;Wang, J.; Chen, Z. J. Phys. Chem. B 2005, 109, 22027.  

    128. [128]

      (128) Wang, J.; Chen, X.; Clarke, M. L.; Chen, Z. J. Phys. Chem. B 2006, 110, 5017.  

    129. [129]

      (129) Ye, S.; Nguyen, K. T.; Boughton, A. P.; Mello, C. M.; Chen, Z. Langmuir 2010, 26, 6471.  

    130. [130]

      (130) Han, X.; Soblosky, L.; Slutsky, M.; Mello, C. M.; Chen, Z. Langmuir 2011, 27, 7042.

    131. [131]

      (131) Chen, X.;Wang, J.; Paszti, Z.;Wang, F.; Schrauben, J. N.; Tarabara, V. V.; Schmaier, A. H.; Chen, Z. Anal. Bioanal. Chem. 2007, 388, 65.  

    132. [132]

      (132) Ye, S.; Nguyen, K. T.; Chen, Z. J. Phys. Chem. B 2010, 114, 3334.  

    133. [133]

      (133) Wang, J.; Clarke, M. L.; Chen, Z. Anal. Chem. 2004, 76, 2159.  

    134. [134]

      (134) Guyotsionnest, P.; Hunt J. H.; Shen, Y. R. Phys. Rev. Lett. 1987, 59, 1597.  

    135. [135]

      (135) Hunt, J. H.; Guyot-Sionnest, P.; Shen, Y. R. Chem. Phys. Lett. 1987, 133, 189.  

    136. [136]

      (136) Zhang, C.;Wang, J.; Khmaladze, A.; Liu, Y.; Ding, B.; Jasensky, J.; Chen, Z. Opt. Lett. 2011, 36, 2272.  

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    3. [3]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    4. [4]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    8. [8]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    9. [9]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    13. [13]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    19. [19]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    20. [20]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

Metrics
  • PDF Downloads(986)
  • Abstract views(2889)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return