Citation: TANG Jun, KANG Chao-Yang, LI Li-Min, XU Peng-Shou. Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2953-2959. doi: 10.3866/PKU.WHXB20112953 shu

Direct Graphene Growth by Depositing Carbon Atoms on Si Substrate Covered by SiC Buffer Layers

  • Received Date: 13 July 2011
    Available Online: 18 October 2011

    Fund Project: 国家自然科学基金(50872128)资助项目 (50872128)

  • Graphene is a newly discovered material with many functions. The preparation of graphene on suitable substrates is a challenge in the material preparation field. In this paper, graphene thin films were grown on Si substrates covered with SiC buffer layers (SiC/Si) by the direct deposition of carbon atoms using molecular beam epitaxy (MBE) equipment. The structural properties of the samples produced at different substrate temperatures (800, 900, 1000, 1100 ° C) were investigated by reflection high energy electron diffraction (RHEED), Raman spectroscopy and near-edge X-ray absorption fine structure (NEXAFS). The results indicate that the thin films grown at all temperatures exhibit the characteristics of graphene with a turbostratic stacking structure. As the substrate temperature increases the crystalline quality of the graphene improves. However, a very high temperature decreases the quality of graphene. The best graphene films were obtained at a substrate temperature of 1000 ° C. This is due to the low substrate temperature resulting in a too low carbon atom activity for the formation of an ordered six-member ring of C-sp2. When the substrate temperature was too high the silicon atoms in the substrate became so active that silicon atoms diffused to the surface of the sample through SiC buffer defects and they bonded to the depositing carbon atoms, which resulted in a lower crystallization quality of the carbon layers.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Service, R. F. Science 2009, 324, 875.  

    3. [3]

      (3) Morzov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Phys. Rev. Lett. 2008, 100, 016602.  

    4. [4]

      (4) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902.  

    5. [5]

      (5) Ganhua, L.; Ocola, L. E.; Junhong, C. Appl. Phys. Lett. 2009, 123, 083111.

    6. [6]

      (6) Kang, C. Y.; Tang, J.; Li, L. M.; Pan, H. B.; Yan,W. S.; Xu, P. S.;Wei, S. Q.; Chen, X. F.; Xu, X. G. Acta Phys. Sin. 2011, 60, 047302. [康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 物理学报, 2011, 60, 047302.]

    7. [7]

      (7) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. J. Phys. Chem. B 2004, 108, 19912.  

    8. [8]

      (8) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.  

    9. [9]

      (9) Di, C. A.;Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B. Adv. Mater. 2008, 20, 3289.  

    10. [10]

      (10) Wu, J. S.; Pisula,W.; Mullen, K. Chem. Rev. 2007, 107, 718.  

    11. [11]

      (11) Hackley, J.; Ali, D.; DiPasquale, J.; Demaree, J. D.; Richardson, C. J. K. Appl. Phys. Lett. 2009, 95, 133114.  

    12. [12]

      (12) Ouerghi, A.; Kahouli, A.; Lucot, D.; Portail, M.; Travers, L.; Gierak, J.; Penuelas, J. P.; Shukla, A.; Chassagne, T.; Zielinski, M. Appl. Phys. Lett. 2010, 96, 191910.  

    13. [13]

      (13) Tang, J.; Liu, Z. L.; Kang, C. Y.; Yan,W. S.; Xu, P. S.; Pan, H. B.;Wei, S. Q.; Gao, Y. Q.; Xu, X. G. Acta Phys. -Chim. Sin. 2010, 26, 253. [唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高玉强, 徐现刚. 物理化学学报, 2010, 26, 253.]

    14. [14]

      (14) Suemitsu, M.; Fukidome, H. J. Phys. D: Appl. Phys. 2010, 43, 374012.  

    15. [15]

      (15) Tang, J.; Kang, C. Y.; Li, L. M.; Yan,W. S.;Wei, S. Q.; Xu, P. S. Phys. E 2011, 43, 1415.  

    16. [16]

      (16) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Journal of Inorganic Materials 2008, 23, 549. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 无机材料学报, 2008, 23, 549.]  

    17. [17]

      (17) Liu, Z. L.; Liu, J. F.; Ren, P.; Xu, P. S. Chinese Journal of Vacuum Science and Technology 2008, 4, 992. [刘忠良, 刘金峰, 任鹏, 徐彭寿. 真空科学与技术学报, 2008, 4, 992]

    18. [18]

      (18) Liu, J. F.; Liu, Z. L.;Wu, Y. Y.; Xu, P. S. Journal of Inorganic Materials 2007, 22, 720. [刘金峰, 刘忠良, 武煜宇, 徐彭寿. 无机材料学报, 2007, 22, 720.]

    19. [19]

      (19) Ni, Z. H.; Chen,W.; Fan, X. F.; Kuo, J. L.; Yu, T.;Wee, A. T. S.; Shen, Z. X. Phys. Rev. B 2008, 77, 115416.  

    20. [20]

      (20) Röhrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, T.; Graupner, R.; Ley, L. Appl. Phys. Lett. 2008, 92, 01918.

    21. [21]

      (21) Thomsen, C.; Reich, S. Phys. Rev. Lett. 2000, 85, 5214

    22. [22]

      (22) Pimenta, M. A.; Dresselhaus, G..; Dresselhaus, M. S.; Cancado, L. G.; Jorioa, A.; Saito, R. Phys. Chem. Chem. Phys 2007, 9, 1276.

    23. [23]

      (23) Ferralis, N.; Maboudian, R.; Carraro, C. Phys. Rev. Lett. 2008, 101, 156801.  

    24. [24]

      (24) Cancado, L. G.; Takai, K.; Enoki, T.; Endo, M.; Kim, Y. A.; Mizusaki, H.; Jorio, A.; Coelho, L. N.; Magalhaes-Pania , R.; Pimenta, M. A. Appl. Phys. Lett. 2006, 88, 163106.  

    25. [25]

      (25) Malarda, L. M.; Pimentaa, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rep. 2009, 473, 51.  

    26. [26]

      (26) Faugeras, C.; Nerrire, A.; Potemski, M.; Mahmood, A.; Dujardin, E.; Berger, C.; de Heer,W. A. Appl. Phys. Lett. 2008, 92, 011914.  

    27. [27]

      (27) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401.  

    28. [28]

      (28) Gupta, A.; Chen, G.; Joshi, P.; Tadigadapa, S.; Eklund, P. C. Nano Lett. 2006, 6, 2667.  

    29. [29]

      (29) Batson, P. E. Phys. Rev. B 1993, 48, 2608.  

    30. [30]

      (30) Fischer, D. A.;Wentzcovitch, R. M.; Carr, R. G.; Continenza, A.; Freeman, A. J. Phys. Rev. B 1991, 44, 1427.  

    31. [31]

      (31) Coleman, V. A.; Kunt, R.; Karis, O. J. Phys. D: Appl. Phys. 2008, 41, 062001

    32. [32]

      (32) Pedio, M.; Giglia, A.; Mahne, N. Phys. Scr. 2005, 115, 308.

  • 加载中
    1. [1]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    2. [2]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    7. [7]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    8. [8]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    15. [15]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    20. [20]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

Metrics
  • PDF Downloads(1413)
  • Abstract views(3162)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return