Citation:
CHEN Shu-Hai, XU Yao, LÜ Bao-Liang, WU Dong. Microwave-Assisted Hydrothermal Synthesis of Ag-Loaded Titania Nanotubes and Their Photocatalytic Performance[J]. Acta Physico-Chimica Sinica,
;2011, 27(12): 2933-2938.
doi:
10.3866/PKU.WHXB20112933
-
Ag-loaded titania nanotubes were synthesized by a microwave-assisted hydrothermal method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) diffuse reflectance spectroscopy. The titania nanotubes were found to be in the anatase phase after calcination. The length of the synthesized titania nanotubes was about 200 nm, the average outer diameter was 7-8 nm, the inner diameter was 5-6 nm and the specific surface area was found to be 371 m2·g-1. With Ag loading the silver atoms did not enter the lattices of the nanotubes but dispersed over the nanotube surface. Ag-loading had no effect on the nanostructure and the crystal phase of the TiO2 nanotubes. The Ag-loaded titania nanotubes showed obvious visible light absorption and enhanced visible photocatalytic performance. The photocatalytic activity was evaluated by the photodegradation of a Rhodamine B aqueous solution under visible light. Compared with Ag-loaded P25 and pure titania nanotubes the Ag-loaded titania nanotubes enhanced the photoactivity and reached the maximum activity at a Ag/Ti molar ratio of 0.5%.
-
-
-
[1]
(1) Jiang, Z.;Yang, F.; Luo, N.; Chu, B.; Sun, D.; Shi, H. H.; Xiao, T. C.; Edwards. P. P. Chem Commun. 2008, No. 47, 6372.
-
[2]
(2) Jaturong, J.; Yoshikazu, S.; Susumu, Y. Catal Commun. 2008, 9, 1265.
-
[3]
(3) Ikeda.T.; Nomoto.T.; Eda. K.; Mizutani. Y.; Kato. H.; Kudo. A.; Onishi. H. J. Phys. Chem. C 2008, 112, 1167.
-
[4]
(4) Yu, A. M.;Wu, G. J.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Catal Lett. 2009, 129, 507.
-
[5]
(5) Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104.
-
[6]
(6) Kowalska, E.; Mahaney, O. O. P.; Abe, R.; Ohtani, B. Phys. Chem. Chem. Phys. 2010, 12, 2344.
-
[7]
(7) Kowalska, E.; Abe, R.; Ohtani, B. Chem. Commun. 2009, No. 2, 241.
-
[8]
(8) Sakthivel, S.; Shankar, M. V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan V. Water Res. 2004, 38, 3001.
-
[9]
(9) Vijayan, B. K.; Dimitrijevic, N. M.;Wu, J.; Gray, K. A. J. Phys. Chem. C 2010, 114, 21262.
-
[10]
(10) Sobana, N.; Muruganadham, M.; Swaminathan, M. J. Mol. Catal. A-Chem. 2006, 258, 124.
-
[11]
(11) Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Liu, Y.; Yang, X. J. J. Catal. 2011, 278, 276.
-
[12]
(12) Wen, B. M.; Liu, C. Y.; Liu, Y. Inorg. Chem. 2005, 44, 6503.
-
[13]
(13) Cheng, B.; Le, Y.; Yu, J. G. J. Hazard. Mater. 2010, 177, 971.
-
[14]
(14) Li, X. Y.; Zou, X. J.; Qua, Z. P.; Zhao, Q. D.;Wang, L. Z. Chemosphere. 2011, 83, 674.
-
[15]
(15) Jung, J. H.; Kobayashi, H.; Bommel, K. J. C.; Shinkai, S.; Shimizu, T. Chem. Mater. 2002, 14, 1445.
-
[16]
(16) Zhang, Y. J.; Li, X. F.; Chen, D.; Ma, N. H.; Hua, X. S.;Wang, H.W. Scripta Mater. 2009, 60, 543.
- [17]
-
[18]
(18) Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.;Walsh, F. C. J. Mater. Chem. 2004, 14, 3370.
-
[19]
(19) Qamar, M.; JKim, S.; Ganguli, A. K. Nanotechnology 2009, 20, 455703.
-
[20]
(20) Long, H. J.;Wang, E. J.; Dong, J. Z.;Wang, L. L.; Cao, Y. Q.; Yang,W. S.; Cao, Y. A. Acta Chim. Sin. 2009, 67, 1533. [龙绘锦, 王恩君, 董江舟, 王玲玲, 曹永强, 杨文胜, 曹亚安, 化学学报, 2009, 67, 1533.]
-
[21]
(21) Li, J. X.; Xu, J. H.; Dai,W. L.; Fan, K. N. J. Phys. Chem. C 2009, 113, 8343.
-
[22]
(22) He, Z. Q.; Xie, L.; Song, S.;Wang, C.; Tu, J. J.; Hong, F. Y.; Liu, Q.; Chen, J. M.; Xu, X. H. J. Mol. Catal A-Chem. 2010, 319, 78.
-
[23]
(23) Yang, X.;Wang, Y. H.; Xu, L. L.; Yu, X. D.; Guo, Y. H. J. Phys. Chem. C 2008, 112, 11481.
-
[24]
(24) Wang, P.; Huang, B. B.; Zhang, X. Y.; Qin, X. Y.; Jin, H.; Dai, Y.;Wang, Z. Y.;Wei, J. Y.; Zhan, J.;Wang, S. Y.;Wang, J. P. Whangbo, M. H. Chem. Eur. J. 2009, 15, 1821.
-
[25]
(25) Takirawa, T.;Watanabe, T.; Honda, K. J. Phys. Chem. 1978, 82, 1391.
-
[26]
(26) Kim,W.; Tachikawa, T.; Majima, T.; Li, C.; Kim, H. J.; Choi, W. Energy Environ. Sci. 2010, 3, 1789.
-
[27]
(27) Chen, Q. F.; Shi,W. M.; Xu, Y.Wu, D. Sun,Y. H. Mater. Chem. Phys. 2011, 125, 825.
-
[1]
-
-
-
[1]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[2]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[3]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[4]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[5]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[6]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[7]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[8]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[9]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[10]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[11]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[12]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[13]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[14]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[15]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[16]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[18]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[19]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[20]
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
-
[1]
Metrics
- PDF Downloads(1303)
- Abstract views(3617)
- HTML views(59)