Citation: ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, LUO Zhi-Yun, CHEN Chao, LI Yue-Ming. Formation Mechanism of Barium Titanate Nanoparticle Aggregations[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2927-2932. doi: 10.3866/PKU.WHXB20112927 shu

Formation Mechanism of Barium Titanate Nanoparticle Aggregations

  • Received Date: 20 July 2011
    Available Online: 10 October 2011

    Fund Project: 国家自然科学基金(91022027, 51062005, 50862005)资助项目 (91022027, 51062005, 50862005)

  • A novel nanoparticle aggregation structure of barium titanate was obtained by the hydrothermal method. Powder X-ray diffraction (XRD) revealed that the aggregates crystallized in the cubic phase. The crystallization of the products became more significant with reaction progress. The growth characteristics of the aggregates was further confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and electron diffraction (ED) spectroscopy. The aggregation was composed of many 5-8 nm nanoparticles by orientation attachment and we found that the ED patterns indicated a single-crystal property for the aggregates. The size of the aggregates was about 60 nm and they grew as the reaction continued. From the results of energy dispersive X-ray (EDX) spectroscopy analysis and kinetics modeling using the Johnson-Mehl-Avrami (JMA) equation, the diffusion nucleation of Ba2+ ion was found to be dominant during the early stages of aggregation formation. The growth process of “diffusion nucleation-orientation attachment”revealed the formation mechanism of barium titanate nanoparticle aggregations.
  • 加载中
    1. [1]

      (1) Pithan, C.; Hennings, D.;Waser, R. Int. J. Appl. Ceram. Technol. 2005, 2, 1.  

    2. [2]

      (2) Lott, J.; Xia, C.; Kosnosky, L.;Weder, C.; Shan, J. Adv. Mater. 2008, 20, 3649.  

    3. [3]

      (3) Guo, H. F.; Zhang, X. T.; Liu, B.; Li, Y.C.; Huang, Y. B.; Du, Z. L. Acta Phys. -Chim. Sin. 2004, 20, 164. [郭惠芬, 张兴堂, 刘兵, 李蕴才, 黄亚彬, 杜祖亮. 物理化学学报, 2004, 20, 164.]

    4. [4]

      (4) Ding, S.W.; Zhai, Y. Q.; Li, Y.;Wang, Z. Q.; Li, J. L. Sci. China Ser. B-Chem. 2000, 43, 283.  

    5. [5]

      (5) Ruan, S. P.; Dong,W.;Wu, F. Q.;Wang, Y.W.; Yu, T.; Peng, Z. H.; Xuan, L. Acta Phys. -Chim. Sin. 2003, 19, 17. [阮圣平, 董玮, 吴凤清, 王永为, 于涛, 彭增辉, 宣丽. 物理化学学报, 2003, 19, 17.]

    6. [6]

      (6) Cui, B.;Wang, X.; Li, Y. D. Chem. J. Chin. Univ. 2007, 28, 1. [崔斌, 王训, 李亚栋. 高等学校化学学报, 2007, 28, 1.]

    7. [7]

      (7) O'Brien, S.; Brus, L.; Murray, C. B. J. Am. Chem. Soc. 2001, 123, 12085.  

    8. [8]

      (8) Zhu, Q. A.; Song, F. P.; Chen,W. P.;Wang, S. F.; Sun, X. F.; Zhang, Q. Chem. J. Chin. Univ. 2006, 27, 1612. [朱启安, 宋方平, 陈万平, 王树峰, 孙旭峰, 张琪. 高等学校化学学报, 2006, 27, 1612.]

    9. [9]

      (9) Urban, J. J.; Yun,W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186.  

    10. [10]

      (10) Mao, Y.; Banerjee, S.;Wong, S. S. J. Am. Chem. Soc. 2003, 125, 15718.  

    11. [11]

      (11) Hernandez, B. A.; Chang, K. S.; Fisher, E. R.; Dorhout, P. K. Chem. Mater. 2002, 14, 480.  

    12. [12]

      (12) Nakano, H.; Nakamura, H. J. Am. Ceram. Soc. 2006, 89, 1455.  

    13. [13]

      (13) Buscaglia, M. T.; Viviani, M.; Zhao, Z.; Buscaglia, V.; Nanni, P. Chem. Mater. 2006, 18, 4002.  

    14. [14]

      (14) Hua, Z. H.; Li, D.; Fu, H. Acta Phys. -Chim. Sin. 2009, 25, 145. [华正和, 李东, 付浩. 物理化学学报, 2009, 25, 145.]

    15. [15]

      (15) Wei, J. H.; Shi, J.; Guan, J. G.; Yuan, R. Z. Acta Phys. -Chim. Sin. 2003, 19, 657. [魏建红, 石兢, 官建国, 袁润章. 物理化学学报, 2003, 19, 657.]

    16. [16]

      (16) Wang, T. X.; Yang, C.; Huang, P.; Zhao, G. P.; Li, Y. R. Chin. J. Inorg. Chem. 2009, 25, 1414. [王婷霞, 杨春, 黄平, 赵国平, 李言荣. 无机化学学报, 2009, 25, 1414.]

    17. [17]

      (17) Xia, C. T.; Shi, E.W.; Zhong,W. Z.; Guo, J. K. Sci. China Ser. B- Chem. 1995, 40, 2002.

    18. [18]

      (18) Zhong,W. Z.; Liu, G. Z.; Shi, E.W.; Hua, S. K.; Tang, D. Y.; Zhao, Q. L. Sci. China Ser. B: Chem- 1994, 37, 1288.

    19. [19]

      (19) Li, Q. L.; Chen, S. T.; Yao, P.;Wei, G.; Qu, Y. H. Acta Phys. -Chim. Sin. 2000, 16, 170. [李青莲, 陈寿田, 姚朴, 魏国, 曲永和. 物理化学学报, 2000, 16, 170.]

    20. [20]

      (20) Eckert, J. O.; Hung-Houston, C. C.; Gerstan, B. L.; Lenka, M. M.; E. Riman, R. J. Am. Ceram. Soc 1996, 79, 2929.  

    21. [21]

      (21) Walton, R. I.; Millange, F.; Smith, R. I.; Hansen, T. C.; O' Hare, D. J. Am. Chem. Soc. 2001, 123, 12547.  

    22. [22]

      (22) Testino, A.; Buscaglia, V.; Buscaglia, M. T.; Viviani, M.; Nanni, P. Chem. Mater. 2005, 17, 5346.  

    23. [23]

      (23) Testino, A.; Buscaglia, M. T.; Buscaglia, V.; Viviani, M.; Bottino, C.; Nanni, P. Chem. Mater. 2004, 16, 1536.  

    24. [24]

      (24) Shi, E.W.; Xia, C. T.;Wang, B. G.; Zhong,W. Z. J. Inorg. Mater. 1996, 11, 193. [施尔畏, 夏长泰, 王步国, 仲维卓. 无机材料学报, 1996, 11, 193.]

    25. [25]

      (25) Shi, E.W.; Chen, Z. Z.; Yuan, R. L.; Zheng, Y. Q. Hydrothermal Crystallography. Scicne Press: Beijing, 2004; pp 222-249. [施尔畏, 陈之战, 元如林, 郑燕青. 水热结晶学. 北京: 科学出版社, 2004: 222-249.]

    26. [26]

      (26) Penn, R. L.; Banfield, J. F. Geochim. Cosmochim. Acta 1999, 63, 1549.  

    27. [27]

      (27) Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.  

    28. [28]

      (28) Hou, R. Z.; Ferreira, P.; Vilarinho, P. M. Chem. Mater. 2009, 21, 3536.  

    29. [29]

      (29) Wang, T. X.; Colfen, H.; Antonietti, M. J. Am. Chem. Soc. 2005, 127, 3246.  

    30. [30]

      (30) Colfen, H.; Antonietti, M. Angew. Chem. Inter. Edit. 2005, 44, 5576.  

    31. [31]

      (31) Wang, T.; Antonietti, M.; Cölfen, H. Chem. Eur. J. 2006, 12, 5722.  

    32. [32]

      (32) Liu, Z.;Wen, X. D.;Wu, X. L.; Gao, Y. J.; Chen, H. T.; Zhu, J.; Chu, P. K. J. Am. Chem. Soc. 2009, 131, 9405.  

    33. [33]

      (33) Nassif, N.; Pinna, N.; Gehrke, N.; Antonietti, M.; Jager, C.; Colfen, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 12653.  

    34. [34]

      (34) Croker, D.; Loan, M.; Hodnett, B. K. Cryst. Growth Des. 2009, 9, 2207.  

    35. [35]

      (35) Zhou, Y.; Antonova, E.; Bensch,W.; Patzke, G. R. Nanoscale 2010, 2, 2412.  

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    6. [6]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    7. [7]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    8. [8]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    9. [9]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    10. [10]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    11. [11]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    17. [17]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(1035)
  • Abstract views(3337)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return