Citation: ZHANG Ying-Ying, CAO Hong-Yu, TANG Qian, ZHENG Xue-Fang. Interactions between Different Classes of Surfactants and Metmyoglobin[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2907-2914. doi: 10.3866/PKU.WHXB20112907 shu

Interactions between Different Classes of Surfactants and Metmyoglobin

  • Received Date: 29 July 2011
    Available Online: 13 October 2011

    Fund Project: 国家自然科学基金(20871024) (20871024) 辽宁省高校创新团队(2006T002, 2008T005, 2009T003) (2006T002, 2008T005, 2009T003) 辽宁省教育厅(2009A069, 2009A071) (2009A069, 2009A071)大连市科技计划(2008E11SF170)资助项目 (2008E11SF170)

  • Complexes of horse metmyoglobin (metMb) with the anionic surfactants sodium bis(2- ethylhexyl) sulfosuccinate (AOT) and sodium dodecyl benzene sulfonate (SDBS), the cationic surfactants dodecyl trimethylammonium bromide (CTAB) and dodecyltrimethyl ammonium bromide (DTAB), and the zwitterionic surfactant 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS) were investigated by UV-Vis absorption, synchronous fluorescence emission, and circular dichroism (CD) spectroscopy. Experimental results show that the anionic and cationic surfactants can interact with metMb intensively depending on the surfactant concentration. The UV-Vis spectra indicate that AOT and SDBS interact with metMb at low concentrations. The addition of AOT (or SDBS) causes the formation of a six-coordinated low-spin heme (6-cLs) hemichrome as is evident from the red shift of the Soret band, the intensity decrease, concomitant appearance of two new Q bands, and the disappearance of ligandto- metal charge transfer (LMCT). The surfactants disturb the Tyr and Trp microenvironment and change the second structure parameter of metMb while the α-helix content decreases. However, the interaction between metMb and CTAB (or DTAB) is different. They cannot disturb heme at very low concentrations but can disturb the Tyr and Trp microenvironment. CTAB and DTAB aggregates can convert metMb to a five-coordinated low-spin heme as shown by the blue shift of the Soret band and cause the heme monomer to leave the hydrophobic cavity of metMb through electrostatic attraction mainly. DTAB/metMb complexes behave in a slightly different way to CTAB/metMb because of their special structure. In contrast, no interaction is evident between the zwitterionic surfactant over a large range of concentrations because of the neutral charge of CHAPS, which precludes an effective electrostatic attraction between the ionic sites of CHAPS and a protein. The significant distance between the ionic sites with opposite charges in metMb precludes a double ionic interaction for each CHAPS surfactant molecule despite the presence of two oppositely charged ionic sites in the CHAPS molecule. Therefore, proteins interact with surfactants in multifarious ways and this depends on the surfactant species, concentration, and structure.
  • 加载中
    1. [1]

      (1) Orioni, B.; Roversi, M.; La Mesa, C.; Asaro, C.; Asaro, F.; Pellizer, G.; Errico, G. D. J. Phys. Chem. B 2006, 110, 12129.  

    2. [2]

      (2) Stenstam, A.; Montalvo, G.; Grillo, I.; Gradzielski, M. J. Phys. Chem. B 2003, 107, 12331.  

    3. [3]

      (3) Kaca,W.; Roth, R. I.; Vandegriff, K. D.; Chen, G. C.; Kuypers, F. A.;Winslow, R. M.; Levin, J. Biochemistry 1995, 34, 11176.  

    4. [4]

      (4) Rupon, J.W.; Domin , S. R.; Smith, S. V.; Gummadib, B. K.; Shields, H.; Ballas, S. K.; King, S. B.; Kim-Shapiro, D. B. Biophys. Chem. 2000, 84, 1.  

    5. [5]

      (5) Ray, A.; Friedman, B. A.; Friedman, J. M. J. Am. Chem. Soc. 2002, 124, 7270.  

    6. [6]

      (6) Sadrzadeh, S. M.; Graf, E.; Panter, S. S.; Hallaway, P. E.; Eaton, J.W. J. Biol. Chem. 1984, 259, 14354.

    7. [7]

      (7) Chakraborty, T.; Chakraborty, I.; Moulik, S. P.; Ghosh, S. Langmuir 2009, 25, 3062.  

    8. [8]

      (8) Sau, A. K.; Currell, D.; Mazumdar, S.; Mitra, S. Biophys. Chem. 2002, 98, 267.  

    9. [9]

      (9) Ajloo, D.; Moosavi-Movahedi, A. A.; Hakimelahi, G. H.; Saboury, A. A.; Gharibi, H. Colloid Surf. B: Biointerfaces 2002, 26, 185.  

    10. [10]

      (10) Liu,W. J.; Guo, X.; Guo, R. Int. J. Biol. Macromol. 2007, 41, 548.  

    11. [11]

      (11) Eaton,W. A.; Hochstrasser, R. M. J. Chem. Phys. 1968, 49, 985.  

    12. [12]

      (12) Strittmatter, P.; Velick, S. F. J. Biol. Chem. 1956, 221, 253.

    13. [13]

      (13) Moreira, L. M.; Poli, A. L.; Costa-Filho, A. J.; Imasato, H. Biophys. Chem. 2006, 124, 62.  

    14. [14]

      (14) Zhou, H.W.; Cao, H. Y.; Tang, Q.; Li, J. J.; Zheng, X. F. Chin. J. Inorg. Chem. 2011, 27, 445. [周华伟, 曹洪玉, 唐乾, 李进京, 郑学仿. 无机化学学报, 2011, 27, 445.]

    15. [15]

      (15) Miller, R.; Alahverdjieva, V. S.; Fainerman, V. B. Soft Matter 2008, 4, 1141.  

    16. [16]

      (16) Jian, J.; Du, J. Y.; Feng, Y. Y.; Yang, X. J.; Lu, T. H. Chin. J. Anal. Chem. 2001, 29, 219. [剑菊, 杜江燕, 冯玉英, 杨秀娟, 陆天虹. 分析化学, 2001, 29, 219.]

    17. [17]

      (17) Santia , P. S.; Moreira, L. M.; Almeida, E. V.; Tabak, M. Biochim. Biophys. Acta 2007, 1770, 506.

    18. [18]

      (18) Tofani, L.; Feis, A.; Snoke, R. E.; Berti, D.; Baglioni, P.; Smulevich, G. Biophys J. 2004, 87, 1186.  

    19. [19]

      (19) Boffi, A.; Das, T. K.; Longa, S.; Spagnuolo, C.; Rousseau, D. L. Biophys. J. 1999, 77, 1143.  

    20. [20]

      (20) Angersen, K. K.;Westh, P.; Otzen, D. E. Langmuir 2008, 24, 399.  

    21. [21]

      (21) Moreira, L. M.; Santia , P. S.; Almeida, E. V.; Tabak, M. Colloid Surf. B: Biointerfaces 2008, 61, 153.  

    22. [22]

      (22) Savelli, G.; Spreti, N.; Profio, P. D. Curr. Opin. Colloid Interface Sci. 2000, 5, 111.  

    23. [23]

      (23) Chen, Y. H.; Yang, J. T.; Chau, K. H. Biochemistry 1974, 13, 3335.

    24. [24]

      (24) Taheri-Kafrani, A.; Asgari-Mobarakeh, E.; Bordbar, A. K.; Haertlé, T. Colloid Surf. B: Biointerfaces 2010, 75, 268.  

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    6. [6]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    9. [9]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    10. [10]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    11. [11]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    15. [15]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    18. [18]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(1033)
  • Abstract views(3050)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return