Citation:
YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang. Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene[J]. Acta Physico-Chimica Sinica,
;2011, 27(12): 2872-2880.
doi:
10.3866/PKU.WHXB20112872
-
α-MnO2-supported ld catalysts (xAu/α-MnO2, x=0-7 (corresponding to the Au loading (mass fraction) of 0-7%) were prepared by a deposition- precipitation method using urea as a precipitation agent and characterized by different techniques such as X-ray diffraction (XRD), N2 adsorption-desorption measurements, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and H2 temperature-programmed reduction (TPR). The catalytic activities of the materials were evaluated for the oxidation of CO and benzene. The Au particle size was found to be related to the Au loading of the xAu/ α-MnO2 samples and increased with Au loading. XPS results showed that the mole ratios of O2-/(O22- or O-), Mn4+/Mn3+ and Au3+/Au0 increased upon the addition of Au. The loading of ld over α-MnO2 significantly modified the catalytic activities. The catalytic performance of xAu/α-MnO2 strongly depended on the Au loading, and 3Au/α-MnO2 gained the best activity at T90=80 °C and T90=20 °C for the catalytic oxidation of CO and benzene, respectively. The excellent performance of 3Au/α-MnO2 is associated with highly dispersed Au, od low-temperature reducibility, and a synergism at the interface between theAu and MnO2 nanodomains.
-
-
-
[1]
(1) Gardner, S. D.; Hoflund, G. B.; Schryer, D. R.; Schryer, J.; Upchurch, B. T.; Kielin, E. J. Langmuir 1991, 7, 2135.
-
[2]
(2) Li, Q.X.; Zhou, X.J.; Li, J.G.; Xu, C.J. Acta Phys. Chim. Sin. 2010, 26, 1488. [李巧霞, 周小金, 李金光, 徐群杰. 物理化学学报, 2010, 26, 1488.]
-
[3]
(3) Li, Y. J.; Zhang, J. J.; Li, N.; Lin, B. X. Acta Phys. -Chim. Sin. 1999, 15, 97. [刘英骏, 张继军, 李能, 林炳雄. 物理化学学报, 1999, 15, 97.]
- [4]
-
[5]
(5) Zwinkels, M. F. M.; Jaras, S. G.; Menon, P. G.; Griffin, T. A. Cat. Rev. -Sci. Eng. 1993, 35, 319.
-
[6]
(6) Taylor, S. H.; Heneghan, C. S.; Hutchings, G. J.; Hudson, I. D. Catal. Today 2000, 59, 249.
-
[7]
(7) Kulshreshtha, S. K.; Gadgil, M. M. Appl. Catal. B 1997, 11, 291.
-
[8]
(8) Luo, M. F.; Yuan, X. X.; Zheng, X. M. Appl. Catal. A 1998, 175, 121.
-
[9]
(9) Ye, Q.; Zhao, J. S.; Huo, F. F.;Wang, J.; Cheng, S. Y.; Kang, T. F.; Dai, H. X. Catal. Today 2011, in press
-
[10]
(10) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405
-
[11]
(11) Zhang, X.; Shi, H.; Xu, B. Q. Catal. Today 2007, 122, 330.
-
[12]
(12) Zhao, J. J.; Zhang, P.; Song,W.; Huang, X. M.; Xu, Y. D. Acta Chim. Sin. 2007, 65 (18), 2007. [邵建军, 张平, 宋巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65 (18), 2007.]
-
[13]
(13) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175.
-
[14]
(14) Wu, Z. B.; Sheng, Z. Y.; Liu, Y.;Wang, H. Q.; Mo, J. S. J. Hazard. Mater. 2011, 185, 1053.
-
[15]
(15) Kijima, N.; Yasuda, H.; Sato, T.; Yoshimura, Y. J. Solid State Chem. 2001, 59, 94
-
[16]
(16) Chen, Y.; Liu, C.; Li, F.; Cheng, H. M. J. Alloy. Compd. 2005, 397, 282.
-
[17]
(17) Carno, J.; Ferrandon, M.; Bjornbom, E.; Jaras, S. Appl. Catal. A 1997, 155, 265.
-
[18]
(18) Tsuji, Y.; Imamura, S. In New Aspects of Spillover Effect in Catalysis; Inui, T.; Fujimoto, K.; Uchijima, T.; Masai, M. Eds. Elsevier: Amsterdam, 1993; 77, p 405.
-
[19]
(19) Xu, R.;Wang, X.;Wang, D. S.; Zhou, K. B.; Li, Y. D. J. Catal. 2006, 237, 426.
-
[20]
(20) Hamoudi, S.; Larachi, F.; Adnot, A.; Sayari, A. J. Catal. 1999, 185, 333.
-
[21]
(21) Madier, Y.; Descorme, C.; Le vic, A.M.; Duprez, D. J. Phys. Chem. B 1999, 103, 10999.
-
[22]
(22) Muilenbergy, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.
-
[23]
(23) Zhen, M.; Steve, H. O.; Sheng, D. J. Mol. Catal. A- Chem. 2007, 273, 186.
-
[24]
(24) Hvolbaek, B.; Janssens, T.V.W.; Clausen, B.S.; Falsig, H.; Christensen, C.H.; Norskov, J.K. Nanotoday 2007, 2, 14.
-
[25]
(25) Ahn, H. G.; Lee, D. J. Res. Chem. Intermed. 2002, 28, 451.
-
[26]
(26) Lambert, S.; Cellier, C.; Gaigneaux, E. M.; Pirard, J. P.; Heinrichs, B. Catal. Commun. 2007, 8, 1244.
-
[27]
(27) Finch, R. M.; Hodge, N. A.; Hutchings, G. J.; Meagher, A.; Pankhurst, Q. A.; Siddiqui, M. R. H.;Wagner, F. E.; Whyman, R. Phys. Chem. Chem. Phys. 1999, 1, 485.
-
[28]
(28) Valden, M.; Lai, X.; odman, D.W. Science 1998, 281, 1647.
-
[29]
(29) Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M.; Kung, H. H. J. Phys. Chem. B 2006, 110, 8689.
-
[30]
(30) Taralunga, M.; Mijoin, J.; Magnoux, P. Applied Catalysis BEnvironmental 2005, 60, 163.
-
[31]
(31) Grisel, R. J. H.; Nieuwenhuys, B. E. J. Catal. 2001, 199, 48.
-
[32]
(32) Mars, P.; van Krevelen, D.W. Chem. Eng. Sci. Spec. Suppl. 1954, 3, 41.
-
[33]
(33) Liu, H.; Kozlov, A. I.; Kozlova, A. P.; Shida, T.; Iwasawa, Y. Phys. Chem. Chem. Phys. 1999, 1, 2851.
-
[34]
(34) Venezia, A. M.; Pantaleo, G.; Lon , A.; Carlo, G. D.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. J. Phys. Chem. B 2005, 109, 2821.
-
[35]
(35) Arena, F.; Trunfio, G.; Negro, J.; Fazio, B.; Spadaro, L. Chem. Mater. 2007, 19, 2269.
-
[1]
-
-
-
[1]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[2]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[3]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[4]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[5]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[6]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[7]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[8]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[9]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[10]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[11]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[12]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[13]
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
-
[14]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[15]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[16]
Xudong Lv , Tao Shao , Junyan Liu , Meng Ye , Shengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028
-
[17]
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
-
[18]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
-
[1]
Metrics
- PDF Downloads(1203)
- Abstract views(3440)
- HTML views(82)