Citation:
HU Xian-Chao, CHEN Dan, SHI Bin-Bin, LI Guo-Hua. Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol[J]. Acta Physico-Chimica Sinica,
;2011, 27(12): 2863-2871.
doi:
10.3866/PKU.WHXB20112863
-
Tungsten carbide and titania nanocomposite with a core-shell structure was fabricated by combing chemical immersion with carbonization-reduction, using titania nanopowder as a support and tungsten hexachloride as a tungsten precursor. The crystal phase, morphology, microstructure, and chemical composition of the sample were characterized by X-ray diffraction, transmission electron microscopy, high resolution scanning transmission imaging, and energy dispersive spectroscopy (EDS). The results show that the crystal phase of the sample is composed of rutile, Ti4O7, WC, W2C, and WxC. The tungsten carbide particles coat onto the surface of the rutile support and thus form a core-shell structure. The electrocatalytic activity of the sample for methanol was measured by cyclic voltammetry with a three-electrode system in an alkaline solution. The results indicate that the electrocatalytic activity of the sample is higher than that of a pure titania phase and WC. The improvement in electrocatalytic activity is related to the reduction-carbonization time, the W to Ti molar ratio, the completeness of the shell layer in the core-shell structure, and the crystal phase of the sample. These factors can be correlated to a synergistic effect between titania and tungsten carbide in the nanocomposite. These imply that titania is a suitable support for the enhancement of the electrocatalytic activity of tungsten carbide.
-
-
- [1]
- [2]
-
[3]
(3) Xiao, T. C.; Hanif, A.; York, A. P. E.; Green, J. S. Phys. Chem. 2002, 4, 3522.
-
[4]
(4) Xue, H. X.; Song, G. X.;Wang, L.; Chen, J. M. Acta Chim. Sin. 2003, 61, 208. [薛华欣, 宋国新, 王琳, 陈建民. 化学学报, 2003, 61, 208.]
-
[5]
(5) Zhang, Y. F.; Lin,W.;Wang,W. F.; Li, J. Q. Acta Chim. Sin. 2004, 62, 1041. [章永凡, 林伟, 王文峰, 李俊篯. 化学学报, 2004, 62, 1041.]
-
[6]
(6) Sinfelt, J. H.; Yate, D. J. C. J. Catal. 1968, 10, 362.
-
[7]
(7) Lee, J. S.; Volpe, L.; Ribeiro, F. H.; Boudart, M. J. Catal. 1988, 112, 44.
-
[8]
(8) Keller, V.;Wehrer, P.; Garin, F.; Ducros, R.; Maire, G. J. Catal. 1997, 166, 125.
-
[9]
(9) Fleischmann, R.; Boehm, H. Electrochim. Acta 1977, 20, 1123.
-
[10]
(10) Ma, C. A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6, 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6, 622.]
-
[11]
(11) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10037.
-
[12]
(12) Hwu, H. H.; Polizzotti, B. D.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10045.
-
[13]
(13) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2003, 107, 2029.
-
[14]
(14) Baresel, D.; Gellert,W.; Heidemeyer, J.; Scharner, P. Angew. Chem. Int. Edit. 1971, 10, 194.
-
[15]
(15) Miles, R. Chem. Tech. Biotechnol. 1980, 30, 35.
-
[16]
(16) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170.
-
[17]
(17) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26, 1317.]
-
[18]
(18) Wang, X. J.; Ma, C. A.; Li, G. H.; Zheng, Y. F. Acta Chim. Sin. 2009, 67, 367. [王晓娟, 马淳安, 李国华, 郑遗凡. 化学学报, 2009, 67, 367.]
-
[19]
(19) Shi, B. B.; Yao, G. X.; Li, G. H.; Zheng, Y. F. Chin. J. Catal. 2010, 31, 466. [施斌斌, 姚国新, 李国华, 郑遗凡. 催化学报, 2010, 31, 466.]
-
[20]
(20) Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. J. Electroanal. Chem. 1994, 368, 47.
-
[21]
(21) Tan,W. Y.; Li, G.; Yang, H.; Xing,W.; Lu, T. H. Journal of Nanjing Normal University (Natural Science Edition) 2003, 26, 111. [唐文亚, 李纲, 杨辉, 邢巍, 陆天虹. 南京师大学报 (自然科学版), 2003, 26, 111. ]
-
[22]
(22) Zhao, Y. R.; Lan, H. X.; Dan, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26, 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26, 2255.]
-
[23]
(23) Ding, L. X.;Wang, S. R.; Zheng, X. L.; Chen, Y.; Lu, T. H.; Cao, D. X.; Tang, Y.W. Acta Phys. -Chim. Sin. 2010, 26, 1311. [丁良鑫, 王士瑞, 郑小龙, 陈煜, 陆天虹, 曹殿学, 唐亚文. 物理化学学报, 2010, 26, 1311.]
-
[24]
(24) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 24, 436.]
-
[25]
(25) Frelink, T.; Visscher,W.; Van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65.
-
-
-
[1]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[2]
Chen Pu , Daijie Deng , Henan Li , Li Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021
-
[3]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[6]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[7]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[8]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[9]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[12]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[13]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[14]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[15]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[16]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[18]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[19]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[20]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024
-
[1]
Metrics
- PDF Downloads(1206)
- Abstract views(3383)
- HTML views(104)