Citation: HU Xian-Chao, CHEN Dan, SHI Bin-Bin, LI Guo-Hua. Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2863-2871. doi: 10.3866/PKU.WHXB20112863 shu

Preparation of Tungsten Carbide and Titania Nanocomposite and Its Electrocatalytic Activity for Methanol

  • Received Date: 21 July 2011
    Available Online: 7 September 2011

    Fund Project: 国家自然科学基金(21173193) (21173193)浙江省自然科学基金(Y406094, Y4080209) (Y406094, Y4080209)浙江省科技计划(2007F0039)资助项目 (2007F0039)

  • Tungsten carbide and titania nanocomposite with a core-shell structure was fabricated by combing chemical immersion with carbonization-reduction, using titania nanopowder as a support and tungsten hexachloride as a tungsten precursor. The crystal phase, morphology, microstructure, and chemical composition of the sample were characterized by X-ray diffraction, transmission electron microscopy, high resolution scanning transmission imaging, and energy dispersive spectroscopy (EDS). The results show that the crystal phase of the sample is composed of rutile, Ti4O7, WC, W2C, and WxC. The tungsten carbide particles coat onto the surface of the rutile support and thus form a core-shell structure. The electrocatalytic activity of the sample for methanol was measured by cyclic voltammetry with a three-electrode system in an alkaline solution. The results indicate that the electrocatalytic activity of the sample is higher than that of a pure titania phase and WC. The improvement in electrocatalytic activity is related to the reduction-carbonization time, the W to Ti molar ratio, the completeness of the shell layer in the core-shell structure, and the crystal phase of the sample. These factors can be correlated to a synergistic effect between titania and tungsten carbide in the nanocomposite. These imply that titania is a suitable support for the enhancement of the electrocatalytic activity of tungsten carbide.
  • 加载中
    1. [1]

      (1) Levy, R. B.; Boudart, M. Science 1973, 181, 547.  

    2. [2]

      (2) Böhm, H. Nature 1970, 227, 483.  

    3. [3]

      (3) Xiao, T. C.; Hanif, A.; York, A. P. E.; Green, J. S. Phys. Chem. 2002, 4, 3522.  

    4. [4]

      (4) Xue, H. X.; Song, G. X.;Wang, L.; Chen, J. M. Acta Chim. Sin. 2003, 61, 208. [薛华欣, 宋国新, 王琳, 陈建民. 化学学报, 2003, 61, 208.]

    5. [5]

      (5) Zhang, Y. F.; Lin,W.;Wang,W. F.; Li, J. Q. Acta Chim. Sin. 2004, 62, 1041. [章永凡, 林伟, 王文峰, 李俊篯. 化学学报, 2004, 62, 1041.]

    6. [6]

      (6) Sinfelt, J. H.; Yate, D. J. C. J. Catal. 1968, 10, 362.  

    7. [7]

      (7) Lee, J. S.; Volpe, L.; Ribeiro, F. H.; Boudart, M. J. Catal. 1988, 112, 44.  

    8. [8]

      (8) Keller, V.;Wehrer, P.; Garin, F.; Ducros, R.; Maire, G. J. Catal. 1997, 166, 125.  

    9. [9]

      (9) Fleischmann, R.; Boehm, H. Electrochim. Acta 1977, 20, 1123.

    10. [10]

      (10) Ma, C. A.; Yang, Z.W.; Zhou, Y. H.; Zha, Q. X. Acta Phys. -Chim. Sin. 1990, 6, 622. [马淳安, 杨祖望, 周运鸿, 查全性. 物理化学学报, 1990, 6, 622.]

    11. [11]

      (11) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10037.  

    12. [12]

      (12) Hwu, H. H.; Polizzotti, B. D.; Chen, J. G. J. Phys. Chem. B 2001, 105, 10045.  

    13. [13]

      (13) Hwu, H. H.; Chen, J. G. J. Phys. Chem. B 2003, 107, 2029.  

    14. [14]

      (14) Baresel, D.; Gellert,W.; Heidemeyer, J.; Scharner, P. Angew. Chem. Int. Edit. 1971, 10, 194.  

    15. [15]

      (15) Miles, R. Chem. Tech. Biotechnol. 1980, 30, 35.

    16. [16]

      (16) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170.  

    17. [17]

      (17) Yao, G. X.; Shi, B. B.; Li, G. H.; Zheng, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 1317. [姚国新, 施斌斌, 李国华, 郑遗凡. 物理化学学报, 2010, 26, 1317.]

    18. [18]

      (18) Wang, X. J.; Ma, C. A.; Li, G. H.; Zheng, Y. F. Acta Chim. Sin. 2009, 67, 367. [王晓娟, 马淳安, 李国华, 郑遗凡. 化学学报, 2009, 67, 367.]

    19. [19]

      (19) Shi, B. B.; Yao, G. X.; Li, G. H.; Zheng, Y. F. Chin. J. Catal. 2010, 31, 466. [施斌斌, 姚国新, 李国华, 郑遗凡. 催化学报, 2010, 31, 466.]

    20. [20]

      (20) Cha, C. S.; Li, C. M.; Yang, H. X.; Liu, P. F. J. Electroanal. Chem. 1994, 368, 47.  

    21. [21]

      (21) Tan,W. Y.; Li, G.; Yang, H.; Xing,W.; Lu, T. H. Journal of Nanjing Normal University (Natural Science Edition) 2003, 26, 111. [唐文亚, 李纲, 杨辉, 邢巍, 陆天虹. 南京师大学报 (自然科学版), 2003, 26, 111. ]

    22. [22]

      (22) Zhao, Y. R.; Lan, H. X.; Dan, B. B.; Tian, J. N.; Yang, X. L.; Wang, F. Y. Acta Phys. -Chim. Sin. 2010, 26, 2255. [赵彦春, 兰黄鲜, 邓彬彬, 田建袅, 杨秀林, 王凤阳. 物理化学学报, 2010, 26, 2255.]

    23. [23]

      (23) Ding, L. X.;Wang, S. R.; Zheng, X. L.; Chen, Y.; Lu, T. H.; Cao, D. X.; Tang, Y.W. Acta Phys. -Chim. Sin. 2010, 26, 1311. [丁良鑫, 王士瑞, 郑小龙, 陈煜, 陆天虹, 曹殿学, 唐亚文. 物理化学学报, 2010, 26, 1311.]

    24. [24]

      (24) Peng, C.; Cheng, X.; Zhang, Y.; Chen, L.; Fan, Q. B. Acta Phys. -Chim. Sin. 2004, 20, 436. [彭程, 程璇, 张颖, 陈羚, 范钦柏. 物理化学学报, 2004, 24, 436.]

    25. [25]

      (25) Frelink, T.; Visscher,W.; Van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65.  

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    20. [20]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

Metrics
  • PDF Downloads(1206)
  • Abstract views(3383)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return