Citation: GUO Pei-Zhi, JI Qian-Qian, ZHANG Li-Li, ZHAO Shan-Yu, ZHAO Xiu-Song. Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2836-2840. doi: 10.3866/PKU.WHXB20112836 shu

Preparation and Characterization of Peanut Shell-Based Microporous Carbons as Electrode Materials for Supercapacitors

  • Received Date: 18 July 2011
    Available Online: 13 October 2011

    Fund Project: 国家自然科学基金(20803037, 21143006) (20803037, 21143006) 青岛市应用基础研究项目(11-2-4-2-(8)-jch) (11-2-4-2-(8)-jch)

  • Microporous carbons (PSC-1 and PSC-2) were obtained directly by the carbonization of peanut shells without and with NaOH solution pretreatment, respectively. Both samples have a main pore size of ~0.8 nm. The surface area increases from 552 m2·g-1 for PSC-1 to 726 m2·g-1 for PSC-2. Cyclic voltammograms (CVs) of the PSC-1 and PSC-2 electrodes and the symmetrical supercapacitors show almost rectangular shape indicating excellent capacitance features. The specific capacitances of PSC-1 and PSC-2 can reach 233 and 378 F·g-1, respectively, at a current density of 0.1 A·g-1 in a three-electrode system using porous carbon as the working electrode, a platinum electrode as the counter electrode and a Ag/AgCl electrode as the reference electrode. Furthermore, the electrodes in both three-electrode systems and supercapacitors show high stability and capacitance retainability after 1000 cycles. The formation mechanisms for the two microporous carbons and the relationship between the carbon materials and their electrochemical properties are discussed based on the experimental results.
  • 加载中
    1. [1]

      (1) Chmiola, J.; Yushin, G.; tsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313, 1760.  

    2. [2]

      (2) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.  

    3. [3]

      (3) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publisher: New York, 1999.

    4. [4]

      (4) Burke, A. J. Power Sources 2000, 91, 37.  

    5. [5]

      (5) Kötz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.  

    6. [6]

      (6) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.  

    7. [7]

      (7) Alvarez, S.; Blanco-Lopez, C.; Miranda-Ordieres, A. J.; Fuertes, A. B.; Centeno, T. A. Carbon 2005, 43, 866-870.

    8. [8]

      (8) Li,W.; Zhou, J.; Xing,W.; Zhuo, S. P.; Lü, Y. M. Acta Phys. -Chim. Sin. 2011, 27, 620. [李文, 周晋, 邢伟, 禚淑萍, 吕忆民. 物理化学学报, 2011, 27, 620.]

    9. [9]

      (9) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Ed. 2008, 47, 373.  

    10. [10]

      (10) Raymundo-Piñero, E.; Leroux, F.; Béguin, F. Adv. Mater. 2006, 18, 1877.  

    11. [11]

      (11) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. –Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    12. [12]

      (12) Zhang, C. X.; Long, D. H.; Xing, B. L.; Qiao,W. M.; Zhang, R.; Zhan, L.; Liang, X. Y.; Ling, L. C. Electrochem. Commun. 2008, 10, 1809.  

    13. [13]

      (13) Vilaplana-Orte , E.; Lillo-Ródenas, M. A.; Alcañiz-Monge, J.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon 2009, 47, 2141.  

    14. [14]

      (14) Wilson, K.; Yang, H.; Seo C.W.; MarshallW. E. Bioresour. Technol. 2006, 97, 2266.  

    15. [15]

      (15) Watanabe, I.; Doi, T.; Yamaki, J.; Lin, Y. Y.; Fey, G. T. K. J. Power Sources 2008, 176, 347.  

    16. [16]

      (16) Girgis, B. S.; Yunis, S. S.; Soliman, A. F. Mater. Lett. 2002, 57, 164.  

    17. [17]

      (17) Li, Y. H.; Du, Q. J.;Wang, X. D.; Zhang, P.;Wang, D. C.;Wang, Z. H.; Xia, Y. Z. J. J. Hazard. Mater. 2010, 183, 583.  

    18. [18]

      (18) Yang, J.; Qiu, K. Q. Chem. Eng. J. 2010, 165, 209.  

    19. [19]

      (19) Garg, U. K.; Kaur, M. P.; Garg, V. K.; Sud, D. J. Hazard. Mater. 2007, 140, 60.  

    20. [20]

      (20) Singh, K. P.; Mohan, D.; Sinha, S.; Tondon, G. S.; sh, D. Ind. Eng. Chem. Res. 2003, 42, 1965.  

    21. [21]

      (21) Kara z, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214.  

    22. [22]

      (22) Wang, L. L.; Han, G. T.; Zhang, Y. M. Carbohyd. Polym. 2007, 69, 391.  

    23. [23]

      (23) Janes, A.; Permann, L.; Arulepp, M.; Lust, E. Electrochem. Commun. 2004, 6, 313.  

    24. [24]

      (24) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  

    25. [25]

      (25) Peng, C.; Jin, J.; Chen, G. Z. Electrochim. Acta 2007, 53, 525.  

    26. [26]

      (26) Zheng, J. P. J. Electrochem. Soc. 2003, 150, A484.

    27. [27]

      (27) Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. J. Phys. Chem. B 2002, 106, 10128.  

    28. [28]

      (28) Yang, X. H.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Electrochim. Acta 2007, 53, 752.  

    29. [29]

      (29) Stoller, M. D.; Ruoff, R. S. Energy Environ. Sci. 2010, 3, 1294.  

    30. [30]

      (30) Khomenko, V.; Frackowiak, E.; Béguin, F. Electrochim. Acta 2005, 50, 2499.  

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    5. [5]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    8. [8]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    9. [9]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    10. [10]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    11. [11]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    12. [12]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    13. [13]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    14. [14]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    18. [18]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    19. [19]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1323)
  • Abstract views(3251)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return