Citation: ZENG Yong-Ping, ZHU Xiao-Min, YANG Zheng-Hua. Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol[J]. Acta Physico-Chimica Sinica, ;2011, 27(12): 2779-2785. doi: 10.3866/PKU.WHXB20112779 shu

Car-Parrinello Molecular Dynamics Simulations of Microstructure Properties of Liquid Water, Methanol and Ethanol

  • Received Date: 2 August 2011
    Available Online: 6 September 2011

    Fund Project: 国家自然科学基金(20806064)资助项目 (20806064)

  • Car-Parrinello molecular dynamics (CPMD) calculations were performed on the solvent structure properties of water, methanol, and ethanol. The results show that the first O…O peaks of the radial distribution functions (RDFs) in the three systems are 0.278 nm for water, 0.276 nm for methanol, and 0.275 nm for ethanol. The first O…H peaks of the radial distribution functions (RDFs) in the three systems are at 0.178 nm for water, 0.176 nm for methanol, and 0.177 nm for ethanol. This indicates that the hydrophobic groupings (hydrogen, methyl, and ethyl) have little influence on the first peak position. However, the intensity of the RDFs increases from water to methanol and ethanol. The spatial distribution functions show that the oxygen and hydrogen atoms of other solvent molecules have characteristic orientations on the reference molecules in these systems. The results are in agreement with the first sharp peak of the radial distribution functions. We analyzed the hydrogen bonds using a statistical method. The results show that the average hydrogen bond numbers are 3.62 for water, 1.99 for methanol, and 1.87 for ethanol. Therefore, different hydrogen-bonded network structures are formed for liquid water, methanol, and ethanol via hydrogen bonds.
  • 加载中
    1. [1]

      (1) Susan, B. R.; Lawrence, R. P.; Gerhard, H.; Joel, D. K.; Richard, L. M.; Antonio, R. J. Am. Chem. Soc. 2000, 122, 966.  

    2. [2]

      (2) Ayala, R.; Martinez, J. M.; Pappalardo, R. R.; Muňoz-Paez, A.; Marcos, E. S. J. Phys. Chem. B 2008, 112, 5416.  

    3. [3]

      (3) Rudolph,W.W.; Fischer, D.; Irmer, G.; Pye, C. C. Dalton Trans. 2009, 33, 6513.

    4. [4]

      (4) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, S. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春, 林珂, 胡乃银, 周晓国, 刘世林. 物理化学学报, 2010, 26, 2473.]

    5. [5]

      (5) Liu, Y.;Wang, F. F.; Yu, C. Y.; Liu, C.; ng, L. D.; Yang, Z. Z. Acta Phys. -Chim. Sin. 2011, 27, 379. [刘燕, 王芳芳, 于春阳, 刘翠, 宫利东, 杨忠志. 物理化学学报, 2011, 27, 379.]

    6. [6]

      (6) Savage, P. E. Chem. Rev. 1999, 99, 603.  

    7. [7]

      (7) Hass, K. C.; Schneider,W. F.; Curioni, A.; Andreoni,W. Science 1998, 282, 265.  

    8. [8]

      (8) Staehelin, J.; Hoigne, J. Environ. Sci. Technol. 1985, 79:1206.

    9. [9]

      (9) Danten, Y.; Tassaing. T.; Besnard, M. J. Phys. Chem. A 2006, 110, 8986.  

    10. [10]

      (10) Saiz, L.; Guardia, E.; Padro, J. A. J. Chem. Phys. 2000, 113, 2814.2  

    11. [11]

      (11) van Erp, T. S.; Meijer, E. J. J. Chem. Phys. 2003, 118, 8831.  

    12. [12]

      (12) Chen, R.; Zhao, T. S. Electrochem. Commun. 2007, 9, 718.  

    13. [13]

      (13) Neburchilov, V.; Martin, J.;Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221.  

    14. [14]

      (14) Zhou,W. J.; Zhou, B.; Li,W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; ula, M.; Tsiakaras, P. J. Power Sources 2004, 126, 16.  

    15. [15]

      (15) Li,W.; Liang, C.; Zhou,W.; Qiu, J.; Zhou, Z.; Sun, G.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.  

    16. [16]

      (16) Zhou,W.; Zhou, Z.; Song, S.; Li,W.; Sun, G.; Tsiakaras, P.; Xin, Q. Appl. Cata. B: Environ. 2003, 46, 273.  

    17. [17]

      (17) Song, S.; Tsiakaras, P. Appl. Cata. B: Environ. 2006, 63, 187.  

    18. [18]

      (18) Megyes, T.; Radnai, T.; Grósz, T.; Pálinkás, G. J. Mol. Liq. 2002, 101, 3.  

    19. [19]

      (19) Herdman, G. J.; Salmon, P. S. J. Am. Chem. Soc. 1991, 113, 2930.  

    20. [20]

      (20) Guillot, B.; Marteau, P.; Obriot, J. J. Chem. Phys. 1990, 93, 6148.  

    21. [21]

      (21) Pye, C. C.; Rudolph,W.W. J. Phys. Chem. 1998, 102, 9933.

    22. [22]

      (22) Omta, A.W.; Kropman, M. F.;Woutersen, S.; Bakker, H. J. Science 2003, 301, 347.  

    23. [23]

      (23) Sprik, M.; Hutter, J.; Parrinello, M. J. Chem. Phys. 1996, 105, 1142.  

    24. [24]

      (24) Wernet, P.; Nordlund, D.; Bergmann, U.; Cavalleri, M.; Odelius, M.; Ogasawara, H.; Näslund, L. Å.; Hirsch, T. K.; Ojamäe, L.; Glatzel, P.; Pettersson, L. G. M.; Nilsson, A. Science 2004, 204, 995.

    25. [25]

      (25) Haughney, M.; Ferrario, M.; McDonald, R. J. Phys. Chem. 1987, 91, 4934.  

    26. [26]

      (26) Saiz, L.; Padró, J. A.; Guàrdia, E. J. Phys. Chem. 1997, 101, 78.

    27. [27]

      (27) Pagliai, M.; Cardini, G.; Righini, R.; Schettino, V. J. Chem. Phys. 2003, 119, 6655.  

    28. [28]

      (28) Handgraaf, J.W.; Erp, T. S.; Meijer, E. J. Chem. Phys. Lett. 2003, 367, 617.  

    29. [29]

      (29) Kim, K.; Jordan, K. D. J. Phys. Chem. 1994, 98, 10089.  

    30. [30]

      (30) Provencal, R. A.; Casaes, R. N.; Roth, K.; Paul, J. B.; Chapo, C. N.; Saykally, R. J. J. Phys. Chem. A 2000, 104, 1423.  

    31. [31]

      (31) Xu, X.; ddard,W. A., III. J. Phys. Chem. A 2004, 108, 2305.  

    32. [32]

      (32) Benedict,W. S.; Gailan, N.; Plyler, E. K. J. Chem. Phys. 1956, 24, 1139.  

    33. [33]

      (33) Boyd, S. L.; Boyd, R. J. J. Chem. Theory Comput. 2007, 3, 54.  

    34. [34]

      (34) Sasada, Y.; Takano, M.; Satoh, T. J. Mol. Spectrosc. 1971, 38, 33.  

    35. [35]

      (35) Culot, J. P. Symposium on Gas Phase Molecular Structure, 4th ed.; Austin: Texas, 1972; paper T8.  

    36. [36]

      (36) Han, G. Z.; Zhang, C.; Gao, J. G.; Qian, P. Acta Phys. -Chim. Sin. 2011, 27, 1361. [韩光占, 张超, 高吉刚, 钱萍. 物理化学学报2011, 27, 1361.]

    37. [37]

      (37) Coussan, S.; Bouteiller, Y.; Perchard, J. P.; Zheng,W. Q. J. Phys. Chem. A 1998, 102, 5789.  

    38. [38]

      (38) Narten, A. H.; Levy, H. A. J. Chem. Phys. 1971, 55, 2263.  

    39. [39]

      (39) Narten, A. H.; Nabenschuss, A. J. Chem. Phys. 1984, 80, 3387.  

    40. [40]

      (40) Svishchev, I. M.; Kusalik, P. G. J. Chem. Phys. 1994, 100, 5165.  

    41. [41]

      (41) Kuo,W.; Mundy, J.; McGrath, J.; Siepmann, J. I.; Van de Vondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed, F.; Krack, M.; Parrinello, M. J. Phys. Chem. B 2004, 108, 12990.  

    42. [42]

      (42) Padró, J. A.; Saiz, L.; Guàrdia, E. J. Mol. Struct. 1997, 416, 243.  

    43. [43]

      (43) Jorgensen,W. L. J. Phys. Chem. 1986, 90, 1276.  

    44. [44]

      (44) Boese, A. D.; Doltsinis, N. L.; Handy, N. C.; Sprik, M. J. Chem. Phys. 2000, 112, 1670.  

    45. [45]

      (45) Soper, A. K.; Bruni, F.; Ricci, M. A. J. Chem. Phys. 1997, 106, 247.  

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    3. [3]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    4. [4]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    11. [11]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    12. [12]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    13. [13]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    14. [14]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    15. [15]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

Metrics
  • PDF Downloads(1347)
  • Abstract views(4471)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return