Citation: ZHAO Jing-Mao, LI Jun. Corrosion Inhibition Performance of Carbon Steel in Brine Solution Containing H2S and CO2by Novel Gemini Surfactants[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 623-629. doi: 10.3866/PKU.WHXB201112293 shu

Corrosion Inhibition Performance of Carbon Steel in Brine Solution Containing H2S and CO2by Novel Gemini Surfactants

  • Received Date: 17 October 2011
    Available Online: 29 December 2011

    Fund Project: 国家自然科学基金(51171013)资助项目 (51171013)

  • A series of novel gemini surfactants containing hydroxyl group have been synthesized including 1,3-bis(dodecyl dimethyl ammonium chloride)-2-propanol, 1,3-bis(myristyl dimethyl ammonium chloride)-2-propanol, 1,3-bis(hexadecyl dimethyl ammonium chloride)-2-propanol, and 1,3-bis(octadecyl dimethyl ammonium chloride)-2-propanol, designated as n-3OH-n (n=12, 14, 16, 18, respectively). The corrosion inhibition for carbon steel in brine solution containing H2S and CO2 was investigated using weight loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiencies (IEs) obtained from all of the methods employed demonstrated a clear trend, with the IEs of the gemini surfactants ranked as 14-3OH-14>12-3OH-12> 16-3OH-16>18-3OH-18. Among them, 14-3OH-14 and 12-3OH-12 acted as excellent corrosion inhibitors with IE values greater than 95% at an additive concentration of 35 mg·L-1. Potentiodynamic polarization curves clearly revealed that the gemini surfactants are mixed-type inhibitors which preferentially inhibit the anodic corrosion process. Adsorption of the synthesized gemini surfactants n-3OH-n (n=12, 14, 16) onto a carbon steel surface obeys the Langmuir adsorption isotherm and they exhibit a mixed physical and chemical adsorption. An adsorption model was proposed to elucidate the inhibition mechanism of gemini surfactants.
  • 加载中
    1. [1]

      (1) Choi, Y. S.; Nesic, S.; Ling, S. Electrochim. Acta 2011, 56, 1752.  

    2. [2]

      (2) Yin, Z. F.; Zhao,W. Z. Electrochim. Acta 2008, 53, 3690.  

    3. [3]

      (3) Hu, S. Q.; Hu, J. C.; Shi, X.; Zhang, J.; Guo,W. Y. Acta Phys. -Chim. Sin. 2009, 25 (12), 2524. [胡松青, 胡建春, 石鑫, 张军, 郭文跃. 物理化学学报, 2009, 25 (12), 2524.]

    4. [4]

      (4) Trabanelli, G. Corrosion 1991, 47, 410.  

    5. [5]

      (5) Asefi, D.; Arami, M.; Mahmoodi, N. M. Corrosion Sci. 2010, 52, 794.  

    6. [6]

      (6) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Appl. Surf. Sci. 2005, 246, 1.  

    7. [7]

      (7) Chen, Q.; Zhang, D.; Li, R.; Liu, H.; Hu, Y. Thin Solid Films 2006, 496, 42.  

    8. [8]

      (8) Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Edit. 2000, 39, 1906.  

    9. [9]

      (9) Bagha, A. R. T.; Bahrami, H.; Movassagh, B.; Arami, M.; Arirshahi, S. H.; Menger, F. M. Colloid. Surf. A 2007, 307, 121.  

    10. [10]

      (10) Yao, S. Z.; Jiang, X. H.; Zhou, L. M.; Lv, Y. J.; Hu, X. Q. Mater. Chem. Phys. 2007, 104, 301.  

    11. [11]

      (11) Bagha, A. R. T.; Bahrami, H.; Movassagh, B.; Arami, M.; Menger, F. M. Dyes and Pigments 2007, 72, 331.  

    12. [12]

      (12) Qiu, L. G.;Wang, Y. M.; Jiang, X. Corrosion Sci. 2008, 50, 576.  

    13. [13]

      (13) Achouri, M. E.; Infante, M. R.; Izquierdo, F.; Kertit, S.; uttaya, H. M.; Nciri, B. Corrosion Sci. 2001, 43, 19.  

    14. [14]

      (14) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Corrosion Sci. 2005, 47, 273.  

    15. [15]

      (15) Huang,W.; Zhao, J. Colloid. Surf. A 2006, 278, 246.  

    16. [16]

      (16) Qiu, L. G.; Xie, A. J.; Shen, Y. H. Mater. Chem. Phys. 2005, 91, 269.  

    17. [17]

      (17) Wang, X.; Yang, H.;Wang, F. Corrosion Sci. 2010, 52, 1268.  

    18. [18]

      (18) Hegazy, M. A.; Abdallah, M.; Ahmed, H. Corrosion Sci. 2010, 52, 2897.  

    19. [19]

      (19) Hegazy, M. A. Corrosion Sci. 2009, 51, 2610.  

    20. [20]

      (20) Yang, J. Z.; Miao, Z. C.; Xu, L. Fine Chemicals 2005, 22, 49. [杨建洲, 苗宗成, 林里. 精细化工, 2005, 22, 49.]

    21. [21]

      (21) Tang, L. B.; Mu, G. N.; Liu, G. H. Corrosion Sci. 2003, 45, 2251.  

    22. [22]

      (22) Cao, C. N. Journal of Chinese Society of Corrosion and Protection 1985, 5, 155. [曹楚南. 中国腐蚀与防护学报, 1985, 5, 155.]

    23. [23]

      (23) Jüttner, K. Electrochim. Acta 1990, 35, 1501.  

    24. [24]

      (24) Paskossy, T. J. Electroanal. Chem. 1994, 364, 111.  

    25. [25]

      (25) Saliyan, V. R.; Adhikari, A. V. Corrosion Sci. 2008, 50, 55.  

    26. [26]

      (26) Benedetti, A. V.; Sumodjo, P. T. A.; Nobe, K.; Cabot, P. L.; Proud,W. G. Electrochim. Acta 1995, 40, 2657.  

    27. [27]

      (27) Hassan, H. H. Electrochim. Acta 2007, 53, 1722.  

    28. [28]

      (28) Quraishi, M. A.; Rawat, J. Mater. Chem. Phys. 2001, 70, 95.  

    29. [29]

      (29) Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Iyer, S. V. K. J. Electrochem. Soc. 1995, 142, 1478.  

    30. [30]

      (30) Christov, M.; Popova, A. Corrosion Sci. 2004, 46, 1613.  

    31. [31]

      (31) Qiu, L. G.;Wu, Y. Progress in Corrosion Research; Bettini, E. L. Ed.; Nova Science Publishers, Inc.: New York, 2007, 159.

    32. [32]

      (32) Elachouri, M.; Hajji, M. S.; Salem, M.; Kertit, S.; Aride, J.; Coudert, R.; Essassi, E. NACE. International; TEXAS: Houston, 1996, 52, 103.

    33. [33]

      (33) Savitri, B. V.; Mayanna, S. Indian J. Chem. Technol. 1996, 3, 103.

    34. [34]

      (34) Hu, S. Q.; Hu, J. C.; Fan, C. C.; Mi, S. Q.; Zhang, J. Guo,W. Y. Acta Phys. -Chim. Sin. 2010, 26, 2163. [胡松青, 胡建春, 范成成, 米思奇, 张军, 郭文跃. 物理化学学报, 2010, 26, 2163.]

    35. [35]

      (35) Okafor, P. C.; Zheng, Y. G. Corrosion Sci. 2009, 51, 850.  

    36. [36]

      (36) Ma, H. Y.; Cheng, X. L.; Chen, S. H.;Wang, C.; Zhang, J. P.; Yang, H. Q. J. Electroanal. Chem. 1998, 451, 11.  

    37. [37]

      (37) Cheng, X. L.; Ma, H. Y.; Zhang, J. P.; Chen, X.; Chen, S. H.; Yang, H. Q. Corrosion 1998, 54, 369.  

    38. [38]

      (38) Ma, H. Y.; Cheng, X. L.; Chen, S. H.; Li, G. Q; Chen, X.; Lei, S. B.; Yang, H. Q. Corrosion 1998, 54, 634.  

    39. [39]

      (39) Gao, Y. M.; Chen, J. J.; Lei, L. C.; Yang, H. Y.; Cao, D. C.;Wu, W. T. Journal of Chinese Society of Corrosion and Protection 2000, 20, 142. [高延敏, 陈家坚, 雷良才, 杨怀玉, 曹殿珍, 吴维弢. 中国腐蚀与防护学报, 2000, 20, 142.]

    40. [40]

      (40) Zhang, J.; Yu,W. Z.; Yan, Y. G.; Yu, L. J.; Ren, Z. J. Acta Phys. -Chim. Sin. 2010, 26, 1386. [张军, 于维钊, 燕友果, 于立军, 任振甲. 物理化学学报, 2010, 26, 1386.]

  • 加载中
    1. [1]

      Xingyu Liao Xiangming Yi Kin Shing Chan . 追凶之路上的怪客——硫化氢. University Chemistry, 2025, 40(6): 172-176. doi: 10.12461/PKU.DXHX202408039

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    16. [16]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    17. [17]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    18. [18]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    19. [19]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    20. [20]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

Metrics
  • PDF Downloads(947)
  • Abstract views(2674)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return