Citation:
SONG Hua, ZHANG Yong-Jiang, SONG Hua-Lin, DAI Min. Effect of Citric Acid on the Hydrodesulfurization Performance of Ni2P/TiO2-Al2O3 Catalyst[J]. Acta Physico-Chimica Sinica,
;2012, 28(03): 661-666.
doi:
10.3866/PKU.WHXB201112291
-
A TiO2-Al2O3 complex support was prepared by the sol-gel method. Nickel phosphide catalyst, Ni2P/TiO2-Al2O3, with citric acid (CA) as a chelating agent, was prepared by impregnation. The catalyst was characterized by X-ray diffraction (XRD), BET specific surface area measurements, H2-temperature programmed reduction (TPR) and temperature programmed oxidation (TPO), and X-ray photoelectron spectroscopy (XPS). The effects of the molar ratio of CA to Ni on catalyst activity for hydrodesulfurization (HDS) of dibenzothiophene (DBT) were studied. Addition of an appropriate amount of CA into the catalyst can change the pores of the Ni2P/TiO2-Al2O3 catalyst, increasing the surface area. The specific surface area reached 126.75 m2·g-1 for n(CA)/n(Ni) of 2/1, an improvement of 57.05 m2·g-1 compared with the catalyst without CA. Regulating n(CA)/n(Ni) can improve the distribution of the active phase and change the active phase species. Addition of CA decreased the temperature required for reduction of nickel and the phosphorus precursor, as well as promoting the formation of the active phase. CA can limit the deposition of carbon on the catalyst surface to some extent, improving its stability. A molar ratio of n(CA)/n(Ni) of 2/1 was found to be optimal for the catalytic activity of the Ni2P/TiO2-Al2O3 catalyst prepared with CA as a chelating agent. At a reaction temperature of 360 °C, pressure of 3.0 MPa, hydrogen/oil ratio of 500 (V/V), and liquid hourly space velocity of 2.0 h-1, the HDS conversion of DBT was 99.5%, which can reduce the sulfur content of a model oil from 2% (w) to 0.01% (w).
-
-
-
[1]
(1) Cecilia, J. A.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Jiménez-López, A. J. Catal. 2009, 263, 4.
-
[2]
(2) Wang, A. J.; Ruan, L. F.; Li, X. Process for Preparing Load Type Transition Metal Phoshpide Deep Hydrogenation Desulfurizing Catalyst. CN Patent 03134186.1, 2004-04-28. [王安杰, 阮立峰, 李翔. 负载型过渡金属磷化物深度加氢脱硫催化剂制备方法: 中国, CN03134186.1[P]. 2004-04-28.]
-
[3]
(3) Zhang, Y.; Li, Z. X.;Wen, X. B.; Liu, Y. Chin. J. Catal. 2005, 26, 105.
-
[4]
(4) Yoshimura, Y.; Sato, T.; Shimada, H.; Matsubayashi, N.; Imamura, M. Catal. Today 1996, 29, 221.
-
[5]
(5) Chen, J. R.; Zhou, Y. S. Journal of Chemical Industry and Engineering 2007, 58, 2244. [陈俊任, 周亚松. 化工学报, 2007, 58, 2244.]
- [6]
-
[7]
(7) Blanchard, P.; Mauchausse, C.; Payen, E.; Grimblot, J.; Poulet, O.; Boisdron, N.; Loutaty, R. Stud. Surf. Sci. Catal. 1995, 91, 1037.
-
[8]
(8) Oyama, S. T. J. Catal. 2003, 216, 343.
-
[9]
(9) Song, H.; Guo, Y. T.; Li, F.; Yu, H. K. Acta Phys. -Chim. Sin. 2010, 26, 2461. [宋华, 郭云涛, 李锋, 于洪坤. 物理化学学报, 2010, 26, 2461.]
-
[10]
(10) Song, H.; Yu, H. K.;Wu, X. C.; Guo, Y. T. Chin. J. Catal. 2010, 31, 447. [宋华, 于洪坤, 武显春, 郭云涛. 催化学报, 2010, 31, 447.]
-
[11]
(11) Li, D. Y.; Yu, X. Z.; Chen, C. L.; Xu, N. P.;Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2006, 20, 825. [李冬燕, 余夕志, 陈长林, 徐南平, 王延儒. 高校化学工程学报, 2006, 20, 825.]
-
[12]
(12) Sawhill, S. J.; Layman, K. A.; Vanwyk, D. R. J. Catal. 2005, 231, 300.
- [13]
-
[14]
(14) Stinner, C.; Tang, Z.; Haouas, M.;Weber, T.; Prins, R. J. Catal. 2002, 208, 456.
-
[15]
(15) Wang, A.; Ruan, L. F.; Teng, Y.; Li, Xiang.; Lu, M. H.; Jing, R.; Wang, Y.; Hu, Y. K. J. Catal. 2005, 229, 314.
-
[16]
(16) Yu, X. Z.;Wang, Y. Q.; Chen, C. L.; Xu, N. P.;Wang, T. R. J. Fuel Chem. Technol. 2006, 34, 100. [余夕志, 王远强, 陈长林, 徐南平, 汪廷儒. 燃料化学学报, 2006, 34, 100.]
-
[17]
(17) Nie, H.; Long, X. Y.; Liu, Q. H.; Li, D. D. Acta Petrolei Sinica (Petroleum Processing Section) 2010, 26, 329. [聂红, 龙湘云, 刘清河, 李大东. 石油学报(石油加工), 2010, 26, 329.]
-
[18]
(18) Sun, J. X.; Xiao, T. C.;Wang, H. T.; Yin, Y. Q.; Lu, Y. L. Mol. Catal. (China) 1999, 13, 4. [苏继新, 肖天存, 王海涛, 殷永泉, 鹿玉理. 分子催化, 1999, 13, 4.]
-
[19]
(19) Kanama, D.; Oyama, S. T.; Otani, S.; Cox, D. F. Surf. Sci. Spectra 2001, 8, 220.
- [20]
- [21]
-
[1]
-
-
-
[1]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[4]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[5]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[8]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[9]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[10]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[11]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[14]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[15]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[16]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[17]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[18]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[20]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[1]
Metrics
- PDF Downloads(835)
- Abstract views(2436)
- HTML views(37)