Citation: SONG Hua, ZHANG Yong-Jiang, SONG Hua-Lin, DAI Min. Effect of Citric Acid on the Hydrodesulfurization Performance of Ni2P/TiO2-Al2O3 Catalyst[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 661-666. doi: 10.3866/PKU.WHXB201112291 shu

Effect of Citric Acid on the Hydrodesulfurization Performance of Ni2P/TiO2-Al2O3 Catalyst

  • Received Date: 5 August 2011
    Available Online: 29 December 2011

    Fund Project: 黑龙江省科技厅(2009G0947-00)资助 (2009G0947-00)

  • A TiO2-Al2O3 complex support was prepared by the sol-gel method. Nickel phosphide catalyst, Ni2P/TiO2-Al2O3, with citric acid (CA) as a chelating agent, was prepared by impregnation. The catalyst was characterized by X-ray diffraction (XRD), BET specific surface area measurements, H2-temperature programmed reduction (TPR) and temperature programmed oxidation (TPO), and X-ray photoelectron spectroscopy (XPS). The effects of the molar ratio of CA to Ni on catalyst activity for hydrodesulfurization (HDS) of dibenzothiophene (DBT) were studied. Addition of an appropriate amount of CA into the catalyst can change the pores of the Ni2P/TiO2-Al2O3 catalyst, increasing the surface area. The specific surface area reached 126.75 m2·g-1 for n(CA)/n(Ni) of 2/1, an improvement of 57.05 m2·g-1 compared with the catalyst without CA. Regulating n(CA)/n(Ni) can improve the distribution of the active phase and change the active phase species. Addition of CA decreased the temperature required for reduction of nickel and the phosphorus precursor, as well as promoting the formation of the active phase. CA can limit the deposition of carbon on the catalyst surface to some extent, improving its stability. A molar ratio of n(CA)/n(Ni) of 2/1 was found to be optimal for the catalytic activity of the Ni2P/TiO2-Al2O3 catalyst prepared with CA as a chelating agent. At a reaction temperature of 360 °C, pressure of 3.0 MPa, hydrogen/oil ratio of 500 (V/V), and liquid hourly space velocity of 2.0 h-1, the HDS conversion of DBT was 99.5%, which can reduce the sulfur content of a model oil from 2% (w) to 0.01% (w).
  • 加载中
    1. [1]

      (1) Cecilia, J. A.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Jiménez-López, A. J. Catal. 2009, 263, 4.  

    2. [2]

      (2) Wang, A. J.; Ruan, L. F.; Li, X. Process for Preparing Load Type Transition Metal Phoshpide Deep Hydrogenation Desulfurizing Catalyst. CN Patent 03134186.1, 2004-04-28. [王安杰, 阮立峰, 李翔. 负载型过渡金属磷化物深度加氢脱硫催化剂制备方法: 中国, CN03134186.1[P]. 2004-04-28.]

    3. [3]

      (3) Zhang, Y.; Li, Z. X.;Wen, X. B.; Liu, Y. Chin. J. Catal. 2005, 26, 105.

    4. [4]

      (4) Yoshimura, Y.; Sato, T.; Shimada, H.; Matsubayashi, N.; Imamura, M. Catal. Today 1996, 29, 221.  

    5. [5]

      (5) Chen, J. R.; Zhou, Y. S. Journal of Chemical Industry and Engineering 2007, 58, 2244. [陈俊任, 周亚松. 化工学报, 2007, 58, 2244.]

    6. [6]

      (6) Medici, L.; Prins, R. J. Catal. 1996, 163, 38.  

    7. [7]

      (7) Blanchard, P.; Mauchausse, C.; Payen, E.; Grimblot, J.; Poulet, O.; Boisdron, N.; Loutaty, R. Stud. Surf. Sci. Catal. 1995, 91, 1037.  

    8. [8]

      (8) Oyama, S. T. J. Catal. 2003, 216, 343.  

    9. [9]

      (9) Song, H.; Guo, Y. T.; Li, F.; Yu, H. K. Acta Phys. -Chim. Sin. 2010, 26, 2461. [宋华, 郭云涛, 李锋, 于洪坤. 物理化学学报, 2010, 26, 2461.]

    10. [10]

      (10) Song, H.; Yu, H. K.;Wu, X. C.; Guo, Y. T. Chin. J. Catal. 2010, 31, 447. [宋华, 于洪坤, 武显春, 郭云涛. 催化学报, 2010, 31, 447.]

    11. [11]

      (11) Li, D. Y.; Yu, X. Z.; Chen, C. L.; Xu, N. P.;Wang, Y. R. Journal of Chemical Engineering of Chinese Universities 2006, 20, 825. [李冬燕, 余夕志, 陈长林, 徐南平, 王延儒. 高校化学工程学报, 2006, 20, 825.]

    12. [12]

      (12) Sawhill, S. J.; Layman, K. A.; Vanwyk, D. R. J. Catal. 2005, 231, 300.  

    13. [13]

      (13) Wang, R.; Smith, K. J. Appl. Catal. A 2010, 380, 149.  

    14. [14]

      (14) Stinner, C.; Tang, Z.; Haouas, M.;Weber, T.; Prins, R. J. Catal. 2002, 208, 456.  

    15. [15]

      (15) Wang, A.; Ruan, L. F.; Teng, Y.; Li, Xiang.; Lu, M. H.; Jing, R.; Wang, Y.; Hu, Y. K. J. Catal. 2005, 229, 314.  

    16. [16]

      (16) Yu, X. Z.;Wang, Y. Q.; Chen, C. L.; Xu, N. P.;Wang, T. R. J. Fuel Chem. Technol. 2006, 34, 100. [余夕志, 王远强, 陈长林, 徐南平, 汪廷儒. 燃料化学学报, 2006, 34, 100.]

    17. [17]

      (17) Nie, H.; Long, X. Y.; Liu, Q. H.; Li, D. D. Acta Petrolei Sinica (Petroleum Processing Section) 2010, 26, 329. [聂红, 龙湘云, 刘清河, 李大东. 石油学报(石油加工), 2010, 26, 329.]

    18. [18]

      (18) Sun, J. X.; Xiao, T. C.;Wang, H. T.; Yin, Y. Q.; Lu, Y. L. Mol. Catal. (China) 1999, 13, 4. [苏继新, 肖天存, 王海涛, 殷永泉, 鹿玉理. 分子催化, 1999, 13, 4.]

    19. [19]

      (19) Kanama, D.; Oyama, S. T.; Otani, S.; Cox, D. F. Surf. Sci. Spectra 2001, 8, 220.

    20. [20]

      (20) Bertrand, P. A. J. Vac. Sci. Technol. 1981, 18, 28.  

    21. [21]

      (21) Abu, I. I.; Smith, K. J. J. Catal. 2006, 241, 356.  

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    9. [9]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(835)
  • Abstract views(2437)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return