Citation: SUN Ya-Ping, FAN Xin-Zhuang, LU Yong-Hong, XU Hai-Bo. Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 603-608. doi: 10.3866/PKU.WHXB201112272 shu

Electrocatalytic Performance and Pseudo-Capacitive Characteristics of Modified Graphite Electrode with Fe3+/Fe2+ in H2SO4 Solution

  • Received Date: 7 November 2011
    Available Online: 27 December 2011

    Fund Project: 山东省博士基金(BS2010NJ018, BS2011NJ019) (BS2010NJ018, BS2011NJ019)中央高校基础科研基金(201022006)资助项目 (201022006)

  • The electrocatalytic performance and pseudocapacitive characteristics of a modified graphite electrode (MGE) with Fe3+/Fe2+ in H2SO4 solution were studied by cyclic voltammetry (CV), constant current charge-discharge measurements, and electrochemical impedance spectroscopy (EIS). The results showed that the MGE had high electrocatalytic activity and od reversible characteristics for the redox reaction of Fe3+/Fe2+ because of a large quantity of oxygen-containing functional groups on the MGE surface. The apparent area-specific capacitance of the MGE in 2.0 mol·L-1 H2SO4 solution containing 0.5 mol·L-1 Fe3+ and 0.5 mol·L-1 Fe2+ reached 2.157 F·cm-2, which was almost double that in 2.0 mol·L-1 H2SO4 without Fe3+/ Fe2+ . Meanwhile, increasing the concentration of iron ions increased the capacitance of the MGE. The addition of Fe3+/Fe2+ made the charge-discharge curves more symmetric and change more slowly, which increases the charge-discharge time, and effectively improves the capacitive energy storage and high power performance for an electrochemical capacitor (EC). The obvious capacitive characteristics were confirmed by EIS, and are attributed to the oxygen-containing functional groups on the MGE and the Faraday redox reaction of Fe3+/Fe2+ in the thin electrolyte layer. Therefore, the oxygen-containing functional groups on the MGE surface and redox reaction of Fe3+/Fe2+ can be used together for energy storage and release.
  • 加载中
    1. [1]

      (1) Patrice, S.; Yury, G. Nature Materials 2008, 7, 845.  

    2. [2]

      (2) Tian, Z.W.; Dong, Q. F.; Zheng, M. S.; Lin, Z. G. Based on Liquid Phase Electrochemically Active Material for Super Capacitor. CN Patent 200610087625.1, 2006-11-22. [田昭武, 董全峰, 郑明森, 林祖赓. 基于液相中的电化学活性物质的超级电容器: 中国, 200610087625.1[P]. 2006-11-22.]

    3. [3]

      (3) Bae, C. H.; Roberts, E. P. L.; Dryfe, R. A.W. Electrochim. Acta 2002, 48, 279.  

    4. [4]

      (4) Moraw, F.; Fatih, K.;Wilkinson, D.; Girard, F. Adv. Mater. Res. 2007, 15-17, 315.

    5. [5]

      (5) Hagg, C. M.; Skyllas-Kazacos, M. J. Appl. Electrochem. 2002, 32, 1063.  

    6. [6]

      (6) Qian, P.; Zhang, H. M.; Chen, J.;Wen, Y. H.; Luo, Q. T.; Liu, Z. H.; You, D. J.; Yi, B. L. J. Power Sources 2008, 175, 613.  

    7. [7]

      (7) Chen, P. H.; McCreery, R. L. Anal. Chem. 1996, 68, 3958.  

    8. [8]

      (8) Banks, C. E.; Davis, T. J.;Wild ose, G. G.; Compton, R. G. Chem. Commun. 2005, 829.

    9. [9]

      (9) McCreery, R. L. Electroanalytical Chemistry; Bard, A. J. Ed.; Dekker: New York, 1991; Vol. 17, pp 221-374.

    10. [10]

      (10) Li, Q.; Li, K. X.; Sun, G. H.; Fan, H.; Gu, J. N. Acta Phys. - Chim. Sin. 2006, 22, 1445. [李强, 李开喜, 孙国华, 范慧, 谷建宁. 物理化学学报, 2006, 22, 1445.]

    11. [11]

      (11) Xu, H. B.; Fan, X. Z.; Lu, Y. H.; Zhong, L.; Kong, X. F.;Wang, J. Carbon 2010, 48, 3300.  

    12. [12]

      (12) Fan, X. Z.; Lu, Y. H.; Xu, H. B.; Kong, X. F.;Wang, J. J. Mater. Chem. 2011, 21, 18753.  

    13. [13]

      (13) Fan, X. Z.; Lu, Y. H.; Kong, X. F.; Xu, H. B.;Wang, J. Acta Phys. -Chim. Sin. 2011, 27, 887. [范新庄, 芦永红, 孔祥峰, 徐海波, 王佳. 物理化学学报, 2011, 27, 887.]

    14. [14]

      (14) Xu, H. B.; Yan, C.W.; Lu, Y. H.; Liu, J. G. A Redox Reaction Electrochemical Capacitor. CN Patent 201110028479.6, 2011. [徐海波, 严川伟, 芦永红, 刘建国. 一种氧化还原反应电化学电容器: 中国, 201110028479.6[P]. 2011.]

    15. [15]

      (15) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999; pp 200-225.

    16. [16]

      (16) Ye, J. S.; Liu, X.; Cui, H. F.; Zhang,W. D.; Sheu, F. S.; Lim, T. M. Electrochem. Commun. 2005, 7, 249.  

    17. [17]

      (17) Gu, Q. C. New Chemical Table; Jiangsu Science & Technology Publishing House: Nanjing, 1998; pp 1287-1316. [顾庆超. 新编化学用表. 南京: 江苏科技出版社, 1998: 1287-1316.]

    18. [18]

      (18) Pupkevich, V.; Glibin, V.; Karamanev, D. Electrochem. Commun. 2007, 9, 1924.  

    19. [19]

      (19) Hu, C. G.;Wang,W. L.;Wang, S. X.; Zhu,W.; Li, Y. Diamond Relat. Mater. 2003, 12, 1259.

    20. [20]

      (20) Hamann, C. H.; Hamnett, A.; Vielstich,W. Electrochemistry; Chemical Industry Press: Beijing, 2010; pp 201-207; translated by Chen, Y. X., Xia, X. H., Cai, J. Y. [卡尔·H. 哈曼, 安德鲁· 哈姆内特, 沃尔夫·菲尔施蒂希. 电化学. 陈艳霞, 夏兴华, 蔡俊译, 译. 北京: 化学工业出版社, 2010: 201-207.]

    21. [21]

      (21) Li, L. X.; Song, H. H.; Zhang, Q. C.; Yao, J. Y. Chen, X. H. J. Power Sources 2009, 187, 268.  

    22. [22]

      (22) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937.  

    23. [23]

      (23) Sipahi, M.; Parlak, E. A.; Gul, A.; Ekinci, E.; Yardim, M. F.; Sarac, A. S. Prog. Org. Coat. 2008, 62, 96.  

    24. [24]

      (24) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    9. [9]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    10. [10]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    11. [11]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    12. [12]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(888)
  • Abstract views(2352)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return