Citation:
JIANG Li-Long, MA Yong-De, CAO Yan-Ning, YANG Yang, WEI Ke-Mei. Modified Bauxite Supported Ruthenium Catalysts for Hydrogen Evolution in the Water-Gas Shift Reaction[J]. Acta Physico-Chimica Sinica,
;2012, 28(03): 674-680.
doi:
10.3866/PKU.WHXB201112271
-
Hydrothermally treated bauxite with high surface area was used as a ruthenium-based catalyst support. A series of Ru/bauxite and 2.0% (mass fraction) Ru/Al2O3 catalysts were prepared by incipientwetness impregnation. The loading content of ruthenium in the Ru/bauxite catalysts was varied from 1.0% to 4.0%. The catalysts were thoroughly characterized by X-ray fluorescence (XRF), low temperature N2 physical adsorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), and CO temperature-programmed desorption (CO-TPD). The performances of the catalysts for the water-gas shift reaction were also investigated. The results indicated that Ru/bauxite catalysts possess an excellent ability to evolve hydrogen in the water-gas shift reaction. This was attributed to the interaction between Ru and Fe2O3 in the modified bauxite, which could decrease the reduction temperature of Fe2O3, and also improve the adsorption-desorption behavior and decrease the desorption temperature of Ru/bauxite catalysts for CO molecules, resulting in higher activity in the water-gas shift reaction.
-
Keywords:
-
Bauxite
, - Ru/bauxite catalyst,
- Water-gas shift,
- Hydrogen evolution
-
-
-
-
[1]
(1) Amphlett, J. C.; Mann, R. F.; Peppley, B. A. Int. J. Hydrog. Energy 1996, 21 (8), 673.
-
[2]
(2) Hou, Z. J.; Yu, H. M.; Yi, B. L.; Han, M. Electrochemistry 2000, 6 (4), 379. [侯中军, 俞红梅,衣宝廉, 韩明. 电化学, 2000, 6 (4), 379.]
-
[3]
(3) Han, J.; Kim, I. S.; Choi, K. S. J. Power Sources 2000, 86 (1), 223.
-
[4]
(4) Li, S. Y.; Zhou, X. Q. Coal Chem. Ind. 2007, 2, 31. [李速延, 周晓奇. 煤化工, 2007, 2, 31.]
-
[5]
(5) Yao, C. Z.; Zhang, X. Y.;Wang, L. C.; Cao, Y.; Dai,W. L.; Fan, K. N.;Wu, D.; Sun, Y. H. Acta Chim. Sin. 2006, 64 (3), 269. [姚成漳, 张新荣, 王路存, 曹勇, 戴维林, 范康年, 吴东, 孙予罕. 化学学报, 2006, 64 (3), 269.]
-
[6]
(6) Li, L.; Zhan, Y. Y.; Chen, C. Q.; She, Y. S.; Lin, X. Y.; Zheng, Q. Acta Phys. -Chim. Sin. 2009, 25 (7), 1397. [李雷, 詹瑛瑛, 陈崇启, 佘育生, 林性贻, 郑起. 物理化学学报, 2009, 25 (7), 1397.]
-
[7]
(7) Panagiotopoulou, P.; Kondarides, D. I. Catal. Today 2006, 112, 49.
-
[8]
(8) Venu pal, A.; Scurrell, M. S. Appl. Catal A 2004, 258, 241.
-
[9]
(9) Khan, A.; Chen, P.; Boolchand, P.; Smirniotis, P. G. J. Catal. 2008, 253 (1), 91.
-
[10]
(10) Kam, R.; Selomulya, C.; Amal, R.; Scott, J. J. Catal. 2010, 273, 73.
-
[11]
(11) Meunier, F. C.; Reid, D.; guet, A.; Shekhtman, S.; Hardacre, C.; Burch, R.; Deng,W. J. Catal. 2007, 247 (2), 277.
-
[12]
(12) Jacobs, G.; Patterson, P. M.; Graham, U. M.; Crawford, A. C.; Davis, B. H. Int. J. Hydrog. Energy 2005, 30 (11), 1265.
-
[13]
(13) Gunawardana, P.; Lee, H. C.; Kim, D. H. Int. J. Hydrog. Energy 2009, 34 (3), 1336.
-
[14]
(14) Linganiso, L. Z.; Jacobs, G.; Azzam, K. G. Appl. Catal. A 2011, 394 (1), 105.
-
[15]
(15) Zane, F.; Trevisan, V.; Pinna, F.; Signoretto, M.; Menegazzo, F. Appl. Catal. B 2009, 89 (1), 303.
-
[16]
(16) Li, J.; Chen, J. L.; Song,W.; Liu, J. L.; Shen,W. J. Appl. Catal. A 2008, 334, 321.
-
[17]
(17) Graf, P. O.; de Vlieger, D. J. M.; Mojet, B. L.; Lefferts, L. J. Catal. 2009, 262 (2), 181.
-
[18]
(18) Basińska, A.; Domka, F. Catal. Lett. 1993, 22 (4), 327.
-
[19]
(19) Utaka, T.; Okanishi, T.; Takeguchi, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. A 2003, 245, 343.
-
[20]
(20) Guo, X. Y.; Hua, N. P.; Du, Y. K.; Yang, P. Chin. J. Catal. 2007, 28 (2), 137. [郭晓勇, 华南平, 杜玉扣, 杨平. 催化学报, 2007, 28 (2), 137.]
-
[21]
(21) Wei, C. D.; Ma, H.W.; Yang, D. F. Bull. Chin. Ceram. Soc. 2005, 33 (1), 77281. [魏存弟, 马鸿文, 杨殿范. 硅酸盐通报, 2005, 33 (1), 77281.]
-
[22]
(22) Sing, K. S.W.; Everett, D. H.; Haul, R. A.W. Pure Appl. Chem. 1985, 57 (4), 603.
-
[23]
(23) Lloyd, L.; Ridler, D. E.; Twigg, M. V. Catalyst Handbook, 2nd ed.; London:Wolfe, 1989; pp 283-33.
-
[24]
(24) Venu pal, A.; Aluha, J.; Mogano, D.; Scurrell, M. S. Appl. Catal. A 2003, 245 (1), 149.
-
[25]
(25) Jozwiaka,W. K.; Kaczmarek, E.; Manieckia, T. P.; Ignaczaka, W.; Maniukiewicz,W. Appl. Catal. A 2007, 326 (1), 17.
-
[26]
(26) Wang,W.; Ran, R.; Shao, Z. P. Int. J. Hydrog. Energy 2011, 36, 755.
-
[27]
(27) Basinska, A.; Józwiak,W. K.; Góralski, J.; Domka, F. Appl. Catal. A 2000, 190, 107.
-
[28]
(28) Li, J. M.; Huang, F. Y.;Weng,W. Z. Catal. Today 2008, 131, 179.
- [29]
-
[30]
(30) Nagai, Y.; Hirabayashi, T.; Dohmae, K. J. Catal. 2006, 242, 103.
-
[31]
(31) Nagai, Y.; Dohmae, K.; Ikeda, Y.; Takagi, N. Angew Chem. Int. Edit. 2008, 47, 9303.
-
[32]
(32) Pan, Z. Y.; Dong, M. H.; Meng, X. K.; Zhang, X. X.; Mu, X. H.; Zong, B. N. Chem. Eng. Sci. 2007, 62 (10), 2712.
-
[1]
-
-
-
[1]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[2]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[3]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[4]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049
-
[7]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[8]
Yongmei Liu , Lisen Sun , Yongmei Hao , Zhanxiang Liu , Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144
-
[9]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[10]
Xiaogang Liu , Mengyu Chen , Yanyan Li , Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007
-
[11]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[13]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[14]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[15]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[16]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[17]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[18]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[19]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[20]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[1]
Metrics
- PDF Downloads(783)
- Abstract views(2113)
- HTML views(47)